

Summer Independent Learning: A level Mathematics

Year 12 into Year 13

Part 1 - Compulsory

Complete the three practice papers over the summer. This will be more effective if you space them out over the break (e.g. one paper every 2-3 weeks).

For each paper:

- Attempt under timed conditions 2 hours per paper.
- Use the solutions on OneNote to mark and correct your work in a different colour.
- Record your scores in the tables below.
- Identify **two** spec areas (e.g. E1, G4) that you need to work on.
- For these areas, watch the relevant Jack Brown videos
 (https://sites.google.com/view/tlmaths/home/a-level-maths/full-a-level) and complete practice questions from the Independent Practice sections of the class notes (available on OneNote if you've lost your hard copy).

Bring this completed record sheet together with all the work you have completed to your first lesson in September.

Paper 1

<u>. upc</u>																	
Q	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total
Score	6	3	8 4	1 5	5 4	7	4	. 5	6	7	6	8	5	13	12	6	101
Spec a	rea	1:				JB v	idec	s wc	ıtche	ed?		Pr	actic	ce co	mple	ted?	
Spec a	rea 2	2:				JB v	ridec	s wc	ıtche	ed?		Pr	actic	ce co	mple	ted?	

Paper 2

Qυ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total	
Score	6	8	4	13	5	5	5	6	6	5	10	11	9	6		99
Spec a	rea 1	:			JB ·	videc	s wa	tchec	Ίŝ		Prac	ctice	comp	oleted	Άŝ	
Spec a	rea 2	:			JB ·	videc	s wa	tchec	Ίŝ		Prac	ctice	comp	oleted	λś	

Paper 3

Qυ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total	
Score	7	7	11	9	4	5	5	7	6	9	4	10	12	9		105
Spec a	rea 1:	:			JB [,]	videc	s wa	tchec	lŝ		Prac	ctice	comp	oleted	λś	
Spec a	rea 2	:			JB [,]	videc	s wa	tchec	Iŝ		Prac	ctice	comp	oleted	şk	

Part 2 – Optional additional revision

Complete the two extension papers and mark using the solutions on OneNote.

Record your scores and make a note of any questions you would like to ask.

Extension Paper 1

Qυ	1	2	3	4	5	6	7	8	Total
Score	5	9	8	12	10	6	5	8	63
Questic	ns / Lear	ning poin	ts / comr	nents:					

Extension Paper 2

Qυ	1	2	3	4	5	6	7	Total
Score								
	3	9	8	9	9	6	14	58
<u> </u>	, ,							

Questions / Learning points / comments:

Practice Paper 1 (101 marks)

1.	Find, to 1 decimal place, the values of θ in the interval $0 \le \theta \le 180^\circ$ for w	hich
E5, E7	$4\sqrt{3} \sin (3\theta + 20^{\circ}) = 4 \cos (3\theta + 20^{\circ}).$	
0		(Total 6 marks)
2.	Find in exact form the unit vector in the same direction as $\mathbf{a} = 4\mathbf{i} - 7\mathbf{j}$.	/T (12 1)
J3		(Total 3 marks)
3.	Prove, from first principles, that the derivative of $5x^3$ is $15x^2$.	
G1	कार करने । या १ करने के वर्ष के वर्ष वर्ष वर्ष वर्ष वर्ष वर्ष वर्ष कर कार कार कार कार कार कार कार कार कार	(Total 4 marks)
4.	$f(x) = x^3 - 4x^2 - 35x + 20.$	
G3	Find the set of values of x for which $f(x)$ is increasing.	
	ring the set of values of x for which $f(x)$ is increasing.	(Total 5 marks)
5.	Find the exact solutions of the equation $ 6x - 1 = x - 1 $.	[4]
B7		
6.	(a) Find the exact value of the x-coordinate of the stationary point of the curve y	$=x \ln x$. [4]
G4		1502
	(b) The equation of a curve is $y = \frac{4x + c}{4x - c}$, where c is a non-zero constant. Show	
	that this curve has no stationary points.	[3]
7. H5	Show that $\int_{2}^{8} \frac{3}{x} dx = \ln 64.$	[4]
8.	Find	
H5	(i) $\int 8e^{-2x} dx$, (ii) $\int (4x+5)^6 dx$.	
	(ii) $\int (4x+5)^6 dx$	
	(II) J (IX + 5) dx.	[5]
9.	Find $\frac{dy}{dx}$ in each of the following cases:	
G4	(i) $y = x^3 e^{2x}$,	[2]
	(ii) $y = \ln(3 + 2x^2)$,	[2]
	(iii) $y = \frac{x}{2x+1}$.	[2]
10	$(11)^{x}y - \frac{1}{2x+1}$	[4]
10.	Find the equation of the normal to the curve $y = \frac{x^2 + 4}{x + 2}$ at the point $(1, \frac{5}{3})$, giving y	your answer in the form
G4	ax + by + c = 0, where a, b and c are integers.	[7]

11.	Solve, for $0 \le \theta \le 360^\circ$, the equation	
E5 AL	$2 \tan^2 \theta + \sec \theta = 1,$	
	giving your answers to 1 decimal place.	
		6)
12.	5x+3	
Н6	(a) Express $\frac{5x+3}{(2x-3)(x+2)}$ in partial fractions.	(2)
		(3)
	(b) Hence find the exact value of $\int_{2}^{6} \frac{5x+3}{(2x-3)(x+2)} dx$, giving your answer as a single	gle logarithm.
		(5)
13.		
D1	$f(x) = (2-5x)^{-2}, x < \frac{2}{5}.$	
AL	Find the binomial expansion of $f(x)$, in ascending powers of x , as far as the term in x coefficient as a simplified fraction.	enate Natio
		(5)
14.	The diagram shows a block, of mass 13 kg, on a rough horizontal surface. It is a string that passes over a smooth peg to a sphere of mass 7 kg, as shown in the d	Section of the sectio
R6	13 kg	
	13 Ag	
	7kg	
	The system is released from rest, and after 4 seconds the block and the sphere be speed $6\mathrm{ms^{-1}}$, and the block has not reached the peg.	oth have
	(a) State two assumptions that you should make about the string in order to m motion of the sphere and the block.	odel the (2 marks)
	(b) Show that the acceleration of the sphere is $1.5\mathrm{ms^{-2}}$.	(2 marks)
	(c) Find the tension in the string.	(3 marks)
	(d) Find the coefficient of friction between the block and the surface.	(6 marks)

(1 mark)

15.		Two particles, of masses 3 kg and 7 kg, are connected by a light inexter	ensible string
24		that passes over a smooth peg. The 3 kg particle is held at ground lev string above it taut and vertical. The 7 kg particle is at a height of 80 cg ground level, as shown in the diagram.	el with the
		3 kg 80 cm	
		The 3 kg particle is then released from rest.	
	(a)	By forming two equations of motion, show that the magnitude of the act the particles is $3.92\mathrm{ms^{-2}}$.	celeration of [5 marks]
	(b)	Find the speed of the $7\mathrm{kg}$ particle just before it hits the ground.	[3 marks]
	(c)	When the $7\mathrm{kg}$ particle hits the ground, the string becomes slack and in subsequent motion the $3\mathrm{kg}$ particle does not hit the peg.	the .
		Find the maximum height of the 3 kg particle above the ground.	[4 marks]
- 1	A or	nne is used to lift a crate, of mass 70 kg, vertically upwards. As the crat	e is lifted it
6. 3		erates uniformly from rest, rising 8 metres in 5 seconds.	e is intou, it
6. 3			(2 marks)
	accel	erates uniformly from rest, rising 8 metres in 5 seconds.	(2 marks)

(c) Calculate the average speed of the crate during these 5 seconds.

Practice Paper 2 (99 marks)

1.	$\log_{11}(2x-1) = 1 - \log_{11}(x+4).$	
4	Find the value of x showing detailed reasoning.	(Total 6 marks)
2.	A particle P of mass 6 kg moves under the action of two forces, F_1 and	Es vibara
J2,		
R2	$F_1 = (8\mathbf{i} - 10\mathbf{j}) \text{ N} \text{ and } F_2 = (p\mathbf{i} + q\mathbf{j}) \text{ N}, \ p \text{ and } q \text{ are constant}$	ints.
	The acceleration of P is $\mathbf{a} = (3\mathbf{i} - 2\mathbf{j}) \text{ m s}^{-2}$.	
	(a) Find, to 1 decimal place, the angle between the acceleration and i.	
		(2)
	(b) Find the values of p and q .	
		(3)
	(c) Find the magnitude of the resultant force R of the two forces F ₁ and	$\operatorname{id} F_2$
	Simplify your answer fully.	(3)
		(Total 8 marks)
3.	(a) Sketch the graph of $y = 8^x$ stating the coordinates of any points y	where the graph crosses
В9	the coordinate axes.	(2)
	 (b) (i) Describe fully the transformation which transforms the gray y = 8x-1. 	$y = 8^x$ to the graph
		(1)
	(ii) Describe the transformation which transforms the graph	$y = 8^{x-1}$ to the graph
	$y = 8^{x-1} + 5$.	(1)
		(Total 4 marks)

4. The diagram shows part of curve with equation $y = x^2 - 8x + 20$ and part of the line with equation y = x + 6.

(a) Using an appropriate algebraic method, find the coordinates of A and B.

(4)

The x-coordinates of A and B are denoted x_A and x_B respectively.

(b) Find the exact value of the area of the finite region bounded by the x-axis, the lines $x = x_A$ and $x = x_B$ and the line AB.

(2)

(c) Use calculus to find the exact value of the area of the finite region bounded by the x-axis, the lines $x = x_A$ and $x = x_B$ and the curve $y = x^2 - 8x + 20$.

(5)

(d) Hence, find, to one decimal place, the area of the shaded region enclosed by the curve $y = x^2 - 8x + 20$ and the line AB.

(2)

(Total 13 marks)

5.	Find the equation of the tangent to the curve $y = \sqrt{4x + 1}$ at the point (2, 3).	[5]
----	--	-----

G4

6. Solve the inequality |2x-3| < |x+1|.

[5]

B7 AL

G4

7. H5 Given that
$$\int_0^a (6e^{2x} + x) dx = 42$$
, show that $a = \frac{1}{2} \ln(15 - \frac{1}{6}a^2)$. [5]

8. Find, in the form y = mx + c, the equation of the tangent to the curve

 $y = x^2 \ln x$

at the point with x-coordinate e.

[6]

9.	Solve, for $0 \leqslant \theta < 180^{\circ}$, the equation	
E5	$2 \cot^2 \theta - 9 \csc \theta = 3$,	
AL	giving your answers to 1 decimal place.	
		(6)
10. D1	$f(x) = (3+2x)^{-3}, x < \frac{3}{2}.$	
AL	Find the binomial expansion of $f(x)$, in ascending powers of x , as far as the term in	x^3 .
	Give each coefficient as a simplified fraction.	(5)
11.	4-2x 4 B C	
Н6	$f(x) = \frac{4-2x}{(2x+1)(x+1)(x+3)} = \frac{A}{(2x+1)} + \frac{B}{(x+1)} + \frac{C}{(x+3)}.$	
	(a) Find the values of the constants A, B and C.	7.0
		(4)
	(b) (i) Hence find $\int f(x) dx$.	
	J	(3)
	(ii) Find $\int_{0}^{2} f(x) dx$ in the form $\ln k$, where k is a constant.	
	20	(3)
12. R6	A block, of mass 5 kg, slides down a rough plane inclined at 40° to the horizonta modelling the motion of the block, assume that there is no air resistance acting or	
	(a) Draw and label a diagram to show the forces acting on the block.	(1 mark)
	(b) Show that the magnitude of the normal reaction force acting on the block is correct to three significant figures.	37.5 N, (2 marks)
	(c) Given that the acceleration of the block is 0.8 m s ⁻² , find the coefficient of between the block and the plane.	friction (6 marks)
	(d) In reality, air resistance does act on the block. State how this would change for the coefficient of friction and explain why.	your value (2 marks)

3. 4	A car of mass 1600 kg tows a trailer of mass 400 kg on a scar starts from rest and accelerates uniformly. The car trav	
(a)	Find the acceleration of the car.	[3 marks]
(b)	A resistance force of magnitude 500 newtons acts on the comagnitude 80 newtons acts on the trailer. The trailer is comborizontal tow bar. A driving force of magnitude P newtons	nnected to the car by a
(i) Find the tension in the tow bar.	[3 marks]
(i	i) Find P.	[3 marks]
1.	There forces of according 40 M DM and 60 M all and in a b	
	Three forces, of magnitude $40 \mathrm{N}$, $P \mathrm{N}$ and $Q \mathrm{N}$, all act in a hard-forces are in equilibrium. The diagram shows the forces.	
(a)	forces are in equilibrium. The diagram shows the forces. PN 120°	

Practice Paper 3 (105 marks)

s)
j,
2)
ed
5)
s)
5)
4)
2)
8
5 (5)

4.				
4. C1	The points A and B have coordinates $(3k-4, -2)$ and $(1, k+1)$ respectively, vectorstant.	where k is a		
	Given that the gradient of AB is $-\frac{3}{2}$,			
	(a) show that $k = 3$,			
		(2)		
	(b) find an equation of the line through A and B,			
		(3)		
	(c) find an equation of the perpendicular bisector of A and B. Leave your answer in the fo			
	ax + by + c = 0 where a, b and c are integers.			
		(4)		
	(Tot	al 9 marks)		
5.	•2			
H5	Find the exact value of $\int_{1}^{2} \frac{2}{(4x-1)^2} dx.$	[4]		
6.	Find the equation of the tangent to the curve $y = \frac{2x+1}{3x-1}$ at the point $(1, \frac{3}{2})$, giving your answer in the			
G4	form $ax + by + c = 0$, where a, b and c are integers.	[5]		
7.	Solve the inequality An 2 2 2 1	[5]		
B7	Solve the inequality $ 4x-3 < 2x+1 $.	[5]		
AL				
8. <i>G4</i>	For each of the following curves, find $\frac{dy}{dx}$ and determine the exact x-coordinate of the	stationary point:		
	(i) $y = (4x^2 + 1)^5$,	[3]		
	(ii) $y = \frac{x^2}{\ln x}$.	[4]		
	(ii) $y = \frac{1}{\ln x}$.	[4]		
9.	Solve, for $0 \le \theta \le 2\pi$, the equation			
E5 AL	$3\sec^2\theta + 3\sec\theta = 2\tan^2\theta$			
	You must show all your working. Give your answers in terms of π .			
		6)		

10. (a) Expand $\frac{1}{\sqrt{(4-3x)}}$, where $|x| < \frac{4}{3}$, in ascending powers of x up to and including the term in x^2 . Simplify each term.

(5)

(b) Hence, or otherwise, find the first 3 terms in the expansion of $\frac{x+8}{\sqrt{(4-3x)}}$ as a series in ascending powers of x.

(4)

11.

B10

$$\frac{9x^2}{(x-1)^2(2x+1)} = \frac{A}{(x-1)} + \frac{B}{(x-1)^2} + \frac{C}{(2x+1)}.$$

Find the values of the constants A, B and C.

(4)

12.

Q2

The graph shows how the velocity of a particle varies during a 50-second period as it moves forwards and then backwards on a straight line.

(a) State the times at which the velocity of the particle is zero.

(2 marks)

- (b) Show that the particle travels a distance of 75 metres during the first 30 seconds of its motion. (2 marks)
- (c) Find the total distance travelled by the particle during the 50 seconds. (4 marks)
- (d) Find the distance of the particle from its initial position at the end of the 50-second period. (2 marks)

The diagram shows a block, of mass 20 kg, being pulled along a rough horizontal surface by a rope inclined at an angle of 30° to the horizontal.

The coefficient of friction between the block and the surface is μ . Model the block as a particle which slides on the surface.

- (a) If the tension in the rope is 60 newtons, the block moves at a constant speed.
 - (i) Show that the magnitude of the normal reaction force acting on the block is 166 N.
 (3 marks)
 - (ii) Find μ . (4 marks)
- (b) If the rope remains at the same angle and the block accelerates at 0.8 m s⁻², find the tension in the rope. (5 marks)

R4, R6

14.

Figure 2

A fixed rough plane is inclined at 30° to the horizontal. A small smooth pulley P is fixed at the top of the plane. Two particles A and B, of mass 2 kg and 4 kg respectively, are attached to the ends of a light inextensible string which passes over the pulley P. The part of the string from A to P is parallel to a line of greatest slope of the plane and B hangs freely below P, as shown in Figure 2. The coefficient of friction between A and the plane is $\frac{1}{\sqrt{3}}$. Initially A is held at rest on the plane. The particles are released from rest with the string taut and A moves up the plane.

Find the tension in the string immediately after the particles are released.

(9)

Extension Paper 1 (63 marks)

1. G4		$y = \frac{5x^2 + 10x}{(x+1)^2} \qquad x \neq -1$	
	(a) Sh	ow that $\frac{dy}{dx} = \frac{A}{(x+1)^n}$ where A and n are constants to be found.	(4)
	(b) He	ence deduce the range of values for x for which $\frac{dy}{dx} < 0$	(1)
2.		An arithmetic sequence has first term a and common difference d .	
D4		The sum of the first 36 terms of the sequence is equal to the square of the first 6 terms.	sum of the
	(a)	Show that $4a + 70d = 4a^2 + 20ad + 25d^2$	
			[4 marks]
			All and the control of the control o
	(b)	Given that the sixth term of the sequence is 25, find the smallest possible v	
	(b)	Given that the sixth term of the sequence is 25, find the smallest possible v	
3.	(b)	Given that the sixth term of the sequence is 25, find the smallest possible V . Three points A , B and C have coordinates A (8, 17), B (15, 10) and C (-2 ,	value of a. [5 marks]
3. C2	22227		value of a. [5 marks]
	(b)	Three points A, B and C have coordinates A (8, 17), B (15, 10) and C (-2,	value of a. [5 marks]
	22227	Three points A, B and C have coordinates A (8, 17), B (15, 10) and C (-2,	7alue of <i>a</i> . [5 marks] -7)
	(a)	Three points A , B and C have coordinates A (8, 17), B (15, 10) and C (-2 , Show that angle ABC is a right angle.	/alue of a. [5 marks] -7) [3 marks]
	(a) (b)	Three points A , B and C have coordinates A (8, 17), B (15, 10) and C (-2 , Show that angle ABC is a right angle. A , B and C lie on a circle.	7alue of <i>a</i> . [5 marks] -7)
	(a) (b)	Three points A , B and C have coordinates A (8, 17), B (15, 10) and C (-2 , Show that angle ABC is a right angle. A , B and C lie on a circle.	[5 marks] -7) [3 marks]
	(a) (b) (b) (i)	Three points <i>A</i> , <i>B</i> and <i>C</i> have coordinates <i>A</i> (8, 17), <i>B</i> (15, 10) and <i>C</i> (-2, Show that angle <i>ABC</i> is a right angle. <i>A</i> , <i>B</i> and <i>C</i> lie on a circle. Explain why <i>AC</i> is a diameter of the circle. Determine whether the point <i>D</i> (-8, -2) lies inside the circle, on the circle of the circle of the circle.	[5 marks] -7) [3 marks]

(a)	Find the first three terms, in ascending powers of x , of the binomial expansion	nsion
	of $\frac{1}{\sqrt{4+x}}$	
	$\sqrt{4} + x$	[3 marks]
(b)	Hence, find the first three terms of the binomial expansion of $\frac{1}{\sqrt{4-x^3}}$	[2 marks]
(c)	Using your answer to part (b) , find an approximation for $\int_0^1 \frac{1}{\sqrt{4-x^3}} dx$, or	giving your
	answer to seven decimal places.	[3 marks]
(d) (i	Edward, a student, decides to use this method to find a more accurate va- integral by increasing the number of terms of the binomial expansion use	alue for the
	Explain clearly whether Edward's approximation will be an overestimate,	an
	underestimate, or if it is impossible to tell.	[2 marks]
		3.00-3.00-3.00-4.4.4.900-
(d) (i	i) Edward goes on to use the expansion from part (b) to find an approxima	ition
	for $\int_{-2}^{0} \frac{1}{\sqrt{4-x^3}} \mathrm{d}x$	
	Explain why Edward's approximation is invalid.	
		[2 marks]
	$p(x) = 30x^3 - 7x^2 - 7x + 2$	
(a)	Prove that $(2x + 1)$ is a factor of $p(x)$	
1000000		
		[2 marks]
(b)	Factorise $p(x)$ completely.	
		[3 marke]
(c)	Prove that there are no real solutions to the equation	[3 marks]
(c)	Prove that there are no real solutions to the equation	[3 marks]
(c)	Prove that there are no real solutions to the equation $\frac{30\sec^2 x + 2\cos x}{7} = \sec x + 1$	[3 marks]

6. A curve has equation $y = x^3 - 48x$

G1 The point A on the curve has x coordinate -4

The point B on the curve has x coordinate -4 + h

(a) Show that the gradient of the line AB is $h^2 - 12h$

[4 marks]

(b) Explain how the result of part (a) can be used to show that A is a stationary point on the curve.

[2 marks]

7.

Q2

The graph below shows the velocity of an object moving in a straight line over a 20 second journey.

(a) Find the maximum magnitude of the acceleration of the object.

[1 mark]

(b) The object is at its starting position at times 0, t_1 and t_2 seconds.

Find t_1 and t_2

[4 marks]

8.	In this question use $g=9.8\mathrm{ms^{-2}}$
76	A boy attempts to move a wooden crate of mass 20 kg along horizontal ground. The coefficient of friction between the crate and the ground is 0.85
(a)	The boy applies a horizontal force of 150 N. Show that the crate remains stationary. [3 marks]
(b)	Instead, the boy uses a handle to pull the crate forward. He exerts a force of 150 N, at an angle of 15° above the horizontal, as shown in the diagram.
	Determine whether the crate remains stationary.
	Fully justify your answer.
	[5 marks]

Extension Paper 2 (58 marks)

(b) Hence, solve the equation

$$\frac{\cos\left(2\theta+\frac{\pi}{3}\right)}{\sec\left(2\theta+\frac{\pi}{3}\right)+1}=\cot\left(2\theta+\frac{\pi}{3}\right)-\frac{\cos\left(2\theta+\frac{\pi}{3}\right)}{\sec\left(2\theta+\frac{\pi}{3}\right)-1}$$

in the interval $0 \le \theta \le 2\pi$, giving your values of θ to three significant figures where appropriate.

[5 marks]

- Rakti makes open-topped cylindrical planters out of thin sheets of galvanised steel.
- G3 She bends a rectangle of steel to make an open cylinder and welds the joint. She then welds this cylinder to the circumference of a circular base.

The planter must have a capacity of 8000 cm³

Welding is time consuming, so Rakti wants the total length of weld to be a minimum.

Calculate the radius, r, and height, h, of a planter which requires the minimum total length of weld.

Fully justify your answers, giving them to an appropriate degree of accuracy.

[9 marks]

5. (a) Express
$$\frac{5x^2 - 19x + 50}{(1+3x)(5-x)^2}$$
 in the form $\frac{P}{1+3x} + \frac{Q}{5-x} + \frac{R}{(5-x)^2}$

where P, Q and R are constants.

[5 marks]

(b) Hence find
$$\int \frac{5x^2 - 19x + 50}{(1 + 3x)(5 - x)^2} dx$$
.

[4 marks]

6.

A quadrilateral has vertices A, B, C and D with position vectors given by

J4

$$\overrightarrow{OA} = \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix}, \overrightarrow{OB} = \begin{bmatrix} -1 \\ 2 \\ 7 \end{bmatrix}, \overrightarrow{OC} = \begin{bmatrix} 0 \\ 7 \\ 6 \end{bmatrix} \text{ and } \overrightarrow{OD} = \begin{bmatrix} 4 \\ 10 \\ 0 \end{bmatrix}$$

(a) Write down the vector \overrightarrow{AB}

[1 mark]

(b) Show that ABCD is a parallelogram, but not a rhombus.

[5 marks]

7.

R4

A buggy is pulling a roller-skater, in a straight line along a horizontal road, by means of a connecting rope as shown in the diagram.

The combined mass of the buggy and driver is 410 kg A driving force of 300 N and a total resistance force of 140 N act on the buggy.

The mass of the roller-skater is 72 kg A total resistance force of R newtons acts on the roller-skater.

The buggy and the roller-skater have an acceleration of $0.2\,\mathrm{m\,s^{-2}}$

(a) (i) Find R.

[3 marks]

(a) (ii) Find the tension in the rope.

[3 marks]

(b) State a necessary assumption that you have made.

[1 mark]

(c) The roller-skater releases the rope at a point A, when she reaches a speed of 6 m s⁻¹

She continues to move forward, experiencing the same resistance force.

The driver notices a change in motion of the buggy, and brings it to rest at a distance of 20 m from A.

(c) (i) Determine whether the roller-skater will stop before reaching the stationary buggy.

Fully justify your answer.

[5 marks]

(c) (ii) Explain the change in motion that the driver noticed.

[2 marks]