

BTec National Extended Certificate in Applied Science Summer Independent Learning Y12-13

Part 1 – Compulsory Content (pages 2-18)

There are 3 sections to the compulsory content (Biology, Physics and Chemistry)

For each section.

- 1. Watch the videos and use to make flashcards / similar resources, so you can use them to test yourself (metacognition)
- 2. Complete the follow up questions
- 3. Mark the guestions (mark scheme at the end of the document)
- 4. The mark Scheme is at the end of the document, please check your answers after completing the questions.

This will be assessed in the initial assessment

Part 2 - Highly Recommended (pages 19-28)

There are 2 sections to the highly recommended content (maths and practical skills)

Mark schemes (pages 29-48)

Part 1 – Compulsory Content
Biology – Enzymes
Protein structure
Watch the videos:
From 7:20 – 10:50
https://www.youtube.com/watch?v=QFq9o72Qal8&list=PL0Mjub5NT755dp8xUfC-yoXlbPTcjVM1i&index=7
What is the general structure of an amino acid?
How do two amino acids form a dipeptide?
Describe the following protein structures:
Primary Structure
Secondary Structure

Tertiary Structure

Can you describe the role of hydrogen bonds, ionic bonds and disul	fide
bridges in the structure of proteins?	

Enzymes

https://www.bbc.co.uk/bitesize/guides/z88hcj6/revision/1

Enzyme definitions.

This section revises many of the key terms for GCSE to do with enzyme

structure and function. A GCSE level question follows to assess your understanding. Whilst most of the definitions are from the GCSE specification you may find that some are unfamiliar to you.

Define these key words.
Enzyme:
Active site:
Substrate:
Activation energy:
Denature:

Q1. (a) Enzymes are used in body cells.

(i) What is an enzyme?

Draw a ring around the correct answer.

antibody	biological catalyst	hormone
141		

(1)

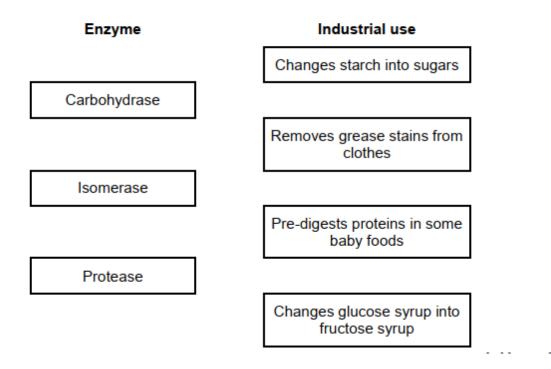
(ii) All enzymes are made of the same type of substance.

What is this substance?

Draw a ring around the correct answer.

carbohydrate	fat	protein
--------------	-----	---------

(1)


(iii) Where is the enzyme amylase produced in the human body? Draw a ring around the correct answer.

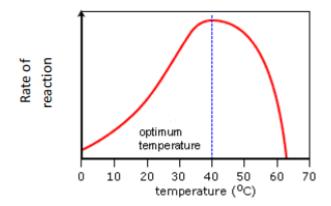
liver	salivary glands	stomach
-------	-----------------	---------

(1)

(b) Enzymes are sometimes used in industry.

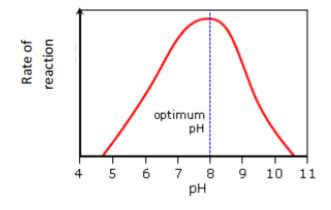
Draw **one** line from each enzyme to the correct industrial use of that enzyme.

Interpreting enzyme graphs.

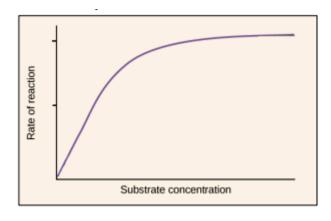

This section requires you to explain how different conditions affect enzyme activity.

Using the following link from our YouTube channel, watch the video and annotate each of the graphs.

You need to *explain* the shape of each graph in terms of enzyme activity.

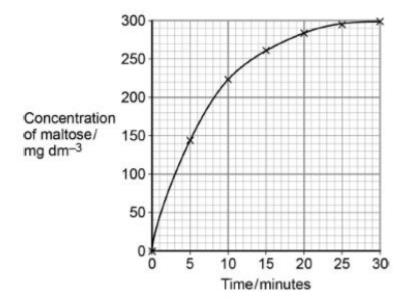

https://www.youtube.com/watch?v=Pk3Lb2UHVcA&list=PL0Mjub5NT755dp8xUfC-yoXlbPTcjVM1i&index=9&t=0s

Q1. Change in temperature.


•••••
•••••
•••••
•••••
•••••
•••••

Q2. Change in pH.

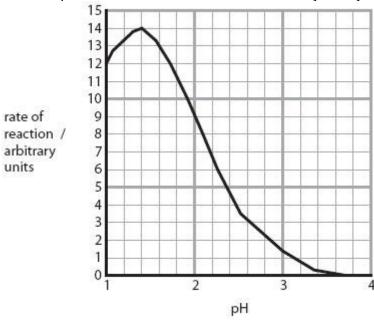
Q3. Change substrate concentration.



PTO

Q4. A scientist investigated the hydrolysis of starch. He added amylase to a suspension of starch and measured the concentration of maltose in the reaction mixture at regular intervals.

His results are shown in the graph below.



	· • • • •
explain the results snown in the graph.	
ANIAIN IND LACIIIC CHAWA IN IND OLAND	

Questions

Q1.

The graph shows how pH affects the rate of the reaction catalysed by enzyme R.

(i) Name enzyme R.	(1)
(ii) The rate of reaction can be determined by measuring how quickly molecule W is formed. Name molecule W.	,
	(1)
(iii) Calculate the difference in the rate of the reaction between pH 1 and pH 2.	(2)
(iv) Suggest why this enzyme works better at pH 1 than at pH 2.	(2)

Q2.

Complete the sentences by putting a cross ($oximes$) in the box next to your answer. (i) Enzymes are	
A cells B hormones C proteins D sugars (ii) An enzyme is a biological catalyst that	(1)
A slows down all chemical reactions B speeds up a chemical reaction C prevents all chemical reactions taking place D has no effect on a chemical reaction	(1)
Q3. (a) Complete the sentences by putting a cross () in the box next to your answer.	
(i) Enzymes are	(1)
B hormones C proteins D sugars (ii) An enzyme is a biological catalyst that	
A slows down all chemical reactions B speeds up a chemical reaction C prevents all chemical reactions taking place D has no effect on a chemical reaction	(1)
(b) The diagrams show two sequences of six amino acids. Sequence 1 is found in an enzyme called catalase.	
Sequence 2 is found in an enzyme called amylase.	
(i) Suggest how the structures of the enzymes, catalase and amylase, are different from other.	each
	(2)

(ii) Sugges	st why the action	of these two enz	ymes will be differ	rent.	(2)
In the pr	esence of catala lent set up five to	investigation to st se, hydrogen pero est tubes, as show	xide breaks down	to release oxyge	n gas.
hydrogen peroxide					
oxygen gas - released			0	0 0	
liver containing –	°°°				
catalase	(pH7)	(pH1)	(pH5)	(pH9)	(pH14)
Explain	the effect of pH	on the enzyme cat	alase in this inves	tigation.	(6)
•••••			•••••		•••••

	Comp								ss (🗵	l) in t	he bo	x nex	t to y	our a	nswei	r.		
≥≥<td>.</td><td>y aci cose cerol</td><td>ds</td><td></td><td></td><td></td><td></td><td></td><td>.:</td><td>Also a</td><td>£6</td><td>-£</td><td> 41</td><td></td><td></td><td></td><td></td><td>(1)</td>	.	y aci cose cerol	ds						.:	Also a	£6	-£	41					(1)
	An ex other	•					ut to	inves	tigate	the e	mect	ог рн	on tr	ie act	ivity	or per	osin a	ma
	graph	-					expe	erime	nt.									
	activity of enzymes / arbitrary units	30 - 20 -				pepsi //				/	/	rypsin						
		0 -			4	##			ЩЦ		Ш	ш				Щ	#	
	omple he gra	ete th			-	3 putt	ing a	5 cross	6 (×)	7 pH in the	8 e box	9 next 1	10 to you	11 ur ans	12 swer.	13	14	(1)
⊠ E	tryp tryp sing th	sin h sin c osin l	as an only w has an	opti orks opt	imum at a imur	pH on pH	of 3 of 3 of 3	n whi	ch th	e acti	vity of	peps	in is (differ	ent to	the a	activi	
1																		
 (iv) E>																		
																		(2)

Section B – Physics – Circuits

GCSE bitesize

https://www.bbc.co.uk/bitesize/guides/zgvq4qt/revision/1

Intro to circuits

https://www.youtube.com/watch?v=R3hdaLpq2AA

V=IR

https://www.youtube.com/watch?v=hRojfU77c38

Power = work done / time

 $\frac{https://www.youtube.com/watch?v=kCJUzdCBOk0\&list=PLidqqIGKox7UVC-8WC9djoeBzwxPeXph7\&index=7}{}$

Q1.

Figure 1 shows a person using an electric lawn mower.

Figure 1

(a)	The lawn mower is connected to the mains electricity supply.	
	What is the frequency of the mains electricity supply in the UK?	
	Frequency = Unit	(2)
The	lawn mower has a switch on each side of the handle.	,
Figu	re 2 shows the circuit diagram for the lawn mower.	
	Figure 2	
	Motor	
(b)	Power supply Left-hand Right-hand switch The motor in the lawn mower can only be turned on when the person using it holds the	
	handle of the lawn mower with both hands. Explain why.	(2)
(c)	The power input to the motor is 1.8 kW	
	The resistance of the motor is 32 Ω	
	Calculate the current in the motor.	
		A

(3)

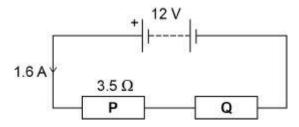
(d) The useful power output from the motor is 1.5 kW

Calculate the time it takes for the motor to transfer 450 000 J of useful energy.

Time = ______ seconds

(3)

(Total 10 marks)


Q2.

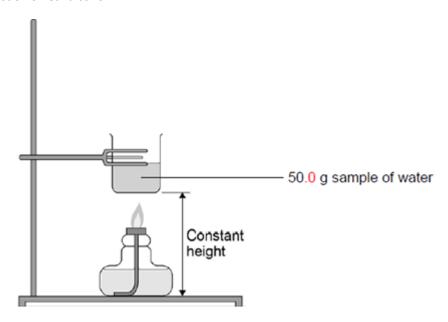
(a) Draw a diagram to show how 1.5 V cells should be connected together to give a potential difference of 4.5 V.

Use the correct circuit symbol for a cell.

(2)

A student built the circuit shown in the diagram below.

Use the equation: $resistance = \frac{potential\ difference}{current}$	
Total resistance =	 Ω
The resistance of P is 3.5 Ω .	
Calculate the resistance of Q .	
Decister of C	
Resistance of Q =	12
The student connects the two resistors in the diagram above in parallel. What happens to the total resistance of the circuit?	
Tick one box.	
It decreases	
It increases	
It does not change	
Give a reason for your answer.	


Section C – Chemistry – Fuels

https://www.youtube.com/watch?v=weKJ3_WbZ0Q

Q1.

The figure below shows apparatus used in an experiment to determine the enthalpy of combustion of leaf alcohol.

The alcohol is placed in a spirit burner and weighed. The burner is lit and the alcohol allowed to burn for a few minutes. The flame is extinguished and the burner is re-weighed. The temperature of the water is recorded before and after heating.

The following table shows the results obtained.

Initial mass of spirit burner and alcohol / g	56.38
Final mass of spirit burner and alcohol / g	55.84
Initial temperature of water / °C	20.7
Final temperature of water / °C	40.8

PTO

sources. Give one reason for your answer.		
State how your answer to part (b) is likely to differ from the value quoted in sources. Give one reason for your answer.		
State how your answer to part (b) is likely to differ from the value quoted in sources. Give one reason for your answer.		
State how your answer to part (b) is likely to differ from the value quoted in sources. Give one reason for your answer.		
State how your answer to part (b) is likely to differ from the value quoted in sources. Give one reason for your answer.		
State how your answer to part (b) is likely to differ from the value quoted in sources. Give one reason for your answer.		
State how your answer to part (b) is likely to differ from the value quoted in sources. Give one reason for your answer.		
State how your answer to part (b) is likely to differ from the value quoted in sources. Give one reason for your answer.		
State how your answer to part (b) is likely to differ from the value quoted in sources. Give one reason for your answer.		
State how your answer to part (b) is likely to differ from the value quoted in sources. Give one reason for your answer.		
State how your answer to part (b) is likely to differ from the value quoted in sources. Give one reason for your answer.		
State how your answer to part (b) is likely to differ from the value quoted in sources. Give one reason for your answer. ———————————————————————————————————		
A 50.0 g sample of water was used in this experiment.	=	
A 50.0 g sample of water was used in this experiment.		
A 50.0 g sample of water was used in this experiment.	reference	
A 50.0 g sample of water was used in this experiment.		
		
	<u> </u>	
Explain how you could measure out this mass of water without using a ba		
	lance.	
		
	(Total	

(b) Use the results from the table above to calculate a value for the enthalpy of combustion of

Part 2 – Highly Recommended Content

Maths

Calculating Rate

This section requires you to understand how to calculate rates change from given data. This is a common skill required in exams. Read the worked examples and complete the questions.

You **MUST** show your working.

You may wish to watch the

https://www.youtube.com/watch?v=CbfxFBfB7kk&list=PL0Mjub5NT756MyHewhXhdRSlygaF_woF3 &index=4&t=0s from 3:55 video on the NCP Biology You tube channel in order to help you with the follow section.

Rate just means 'change per unit time'. To calculate rate, you divide by time.

Worked Examples:

A. A heart beats 3240 times in 45 minutes. Calculate the heart rate in beats/min.

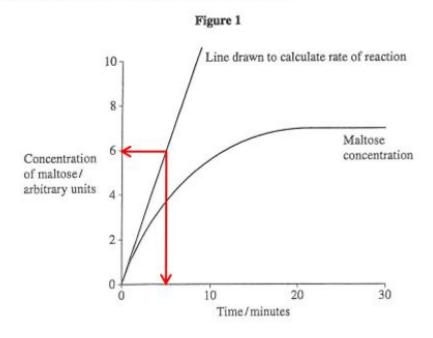
B. In an experiment to demonstrate water uptake by a leaf, volume of water taken up over a 12 hour period was measured over 5 days. The results were: 24 cm3; 21 cm3; 30 cm3; 28 cm3 and 26 cm3. Calculate the mean rate of water uptake per hour.

Mean rate of water uptake = total volume taken up / time

$$= (24 + 21 + 30 + 28 + 26) / (5x12) = 21.5 \text{ cm}^3$$

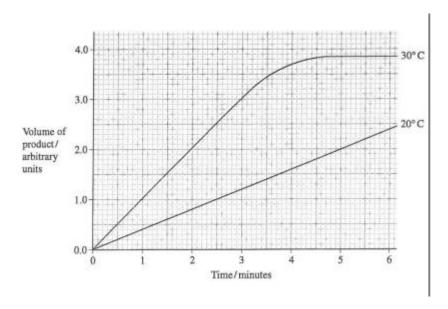
Calculating the rate when the line is a curve

Sometimes the rate of a reaction changes **over time** eg. as substrate is used up in an enzyme controlled reaction. To calculate rate at a point on a curve we need to draw a tangent to the curve at that point. We can then calculate rate using the tangent line


Draw a tangent to the curve. To calculate the gradient, change in Y axis divided by change in time (shown on the X axis).

https://www.youtube.com/watch?v=CbfxFBfB7kk&list=PL0Mjub5NT756MyHewhXhdRSIygaF_woF3 &index=4&t=0s **from 19:30**

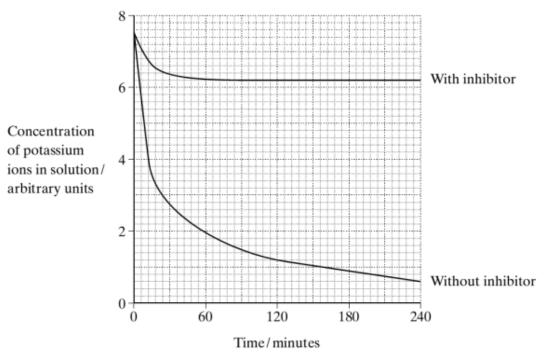
Example


8 Amylase is an enzyme. It catalyses the reaction

Students mixed a starch solution with amylase. They recorded the concentration of maltose at intervals for 30 minutes. Figure 1 shows their results.

Rate =
$$\frac{\text{value on y axis}}{\text{time on x axis}}$$
 = $\frac{6}{4}$ AU = 1.2 AUmin⁻¹

Practise Questions Q1.



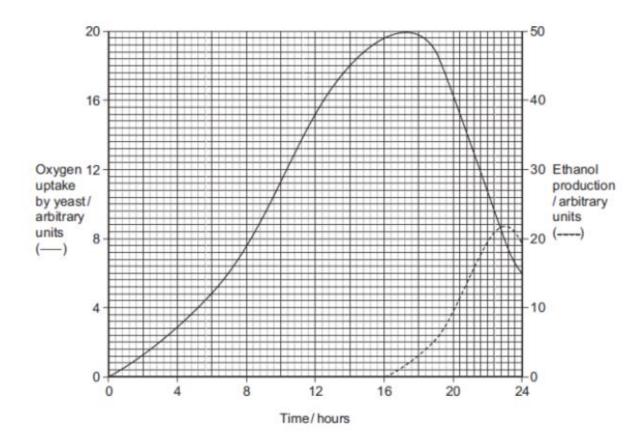
Calculate the rate of reaction of the enzyme at 4 minutes at i) 20oC

ii) 30oC

Q2.

Two samples of the roots of pea plants were placed in solutions containing potassium ions. An inhibitor to prevent respiration was added to one solution. The concentrations of potassium ions in the two solutions were measured at regular intervals. The graph shows the results.

i) Calculate the initial rate of uptake of potassium ions without inhibitor.

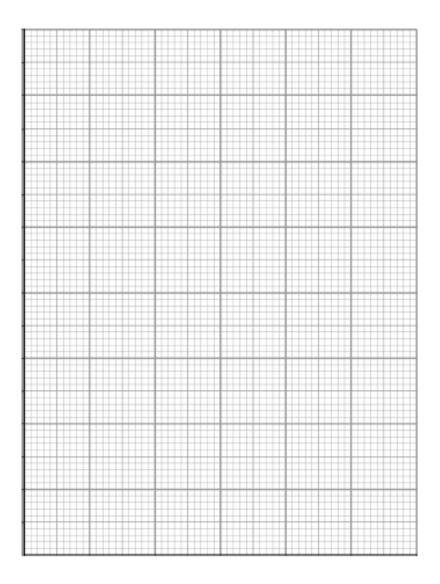

(1)

ii) Calculate the rate of uptake of potassium ions without inhibitor at 60 minutes.

(1)

Q3.

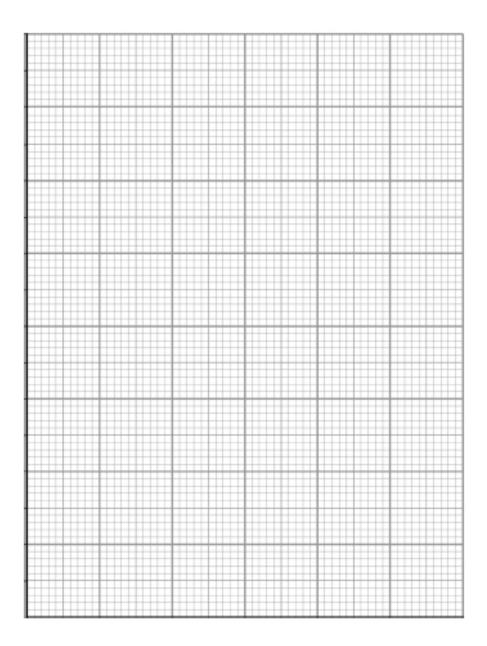
Yeast is a single-celled organism. A student investigated respiration in a population of yeast growing in a sealed container. His results are shown in the graph.


(a) Calculate the rate of oxygen uptake in arbitrary units per hour between 2 and 4 hours.

Answer arbitrary units per hour (1)

Practical Skills

- 1. The enzyme catalase reacts with hydrogen peroxide to produce oxygen.
- a) Calculate the rate of reaction and fill in the table.
- b) Plot a graph of concentration against rate.
- c) Describe your results


Concentration of Enzyme / mol	Volume of oxygen produced in	Rate of reaction / cm ³ min ⁻¹
dm ⁻³	5 minutes / cm ³	
0	0	
0.05	2	
0.1	4	
0.2	8	
0.5	10	
1.0	10	

2. Use the information on burning fuels to answer the following:

alcohol	number of carbon atoms	energy released (kJ/mol)
methanol	1	726
ethanol	2	1367
propanol	3	2021
butanol	4	2676
pentanol	5	3329
hexanol	6	3984
heptanol	7	4638
octanol	8	5294

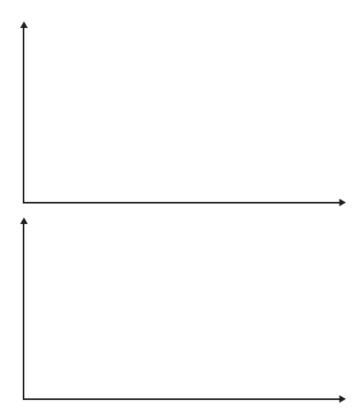
- a. Draw a graph of number of carbon atoms against energy released.
- b. Describe the trend seen
- c. Carry out research to explain the trend seen.

3.

Data Analysis

Physics: I-V Graphs

Electrical Circuits


Case Study A

Power of the light bulb (W)	Resistance of the LDR (Ω)
20	4000
40	1700
60	1000
80	700
100	500

	Case Study B							
Distance from	I	Resistance of	the LDR (Ω	2)				
lamp to LDR (cm)	Trial 1	Trial 2	Trial 3	Mean				
10	171	172	170	171				
11	166	166	167	166				
12	162	159	162	161				
13	157	169	156	157				
14	154	153	156	154				

Based on the data that has been collected what hypothesis could the students have been investigating?

Draw a sketch graph of the results in Case Studies A and B.

Look at Case Study A. What conclusion can be made from the results? Give examples from the data.

Look at Case Study A. What would be an appropriate control variable for this experiment?

nd
100

Mark Scheme

Part 1

Protein structure

What is the general structure of an amino acid?

Amino Acid Structure

How do two amino acids form a dipeptide?

- 2 amino acids join via condensation reactions. Held together by a peptide bond

Describe the following protein structures:

Primary structure: The sequence/order of amino acids that makes up the polypeptides of a protein.

Secondary structure: The way in which the chain of amino acids in a protein is folded. This forms alpha helix and Beta sheets. Structure held in place by hydrogen bonds

Tertiary structure: The further folding and coiling of the secondary structure to give the protein its 3D shape. Held in place by hydrogen, ionic and disulphide bonds. The tertiary structure is important e.g. the shape of an enzymes active site must be complementary shape to the substrate so they can fit.

Can you describe the role of hydrogen bonds, ionic bonds and disulfide bridges in the structure of proteins?

- Hydrogen bonds hold the alpha helix and Beta sheets in place in the secondary structure.
- hydrogen bonds, ionic bonds and disulfide bridges hold the tertiary structure in place (keeps the protein in that shape)

Enzyme definitions.

This section revises many of the key terms for GCSE to do with enzyme structure and function. A GCSE level question follows to assess your understanding. Whilst most of the definitions are from the GCSE specification you may find that some are unfamiliar to you.

Define these key words.

Enzyme: A protein that acts as a biological catalysts lowering the activation energy of a reaction to alter its speed.

Active site: The shape specific region of an enzyme that is complimentary to the substrate.

Substrate: A substance that is acted on by an enzyme. It is complimentary to the enzymes active site.

Activation energy: The energy required to bring about a reaction.

Denature: Permanent change in a proteins 3D shape due to unravelling of the amino acid chain.

- **Q1.** (a) Enzymes are used in body cells.
 - (i) What is an enzyme?

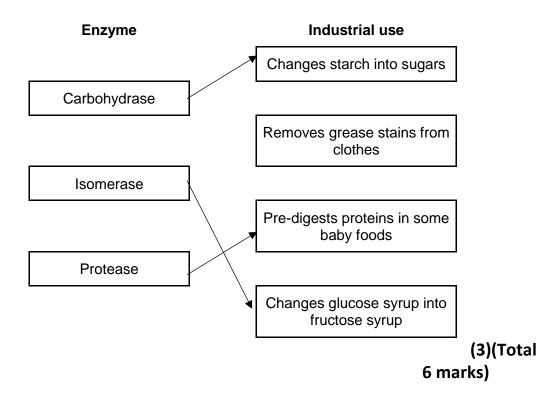
Draw a ring around the correct answer.

an antibody a catalyst a hormone (1)

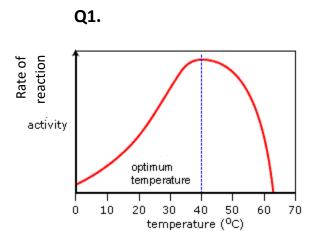
(ii) All enzymes are made of the same type of substance.

What is this substance?

Draw a ring around the correct answer.

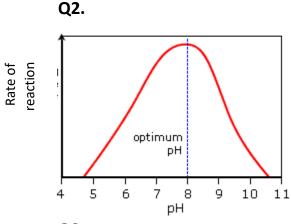

(iii) Where is the enzyme amylase produced in the human body?

Draw a ring around the correct answer.

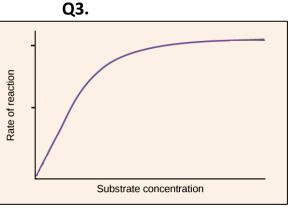


(b) Enzymes are sometimes used in industry.

Draw **one** line from each enzyme to the correct industrial use of that enzyme.



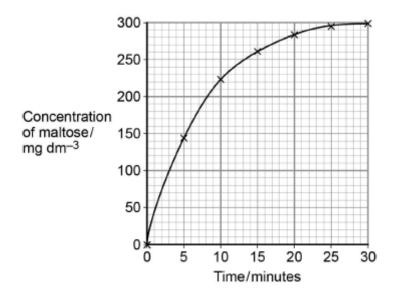
Interpreting enzyme graphs.


Change in temperature.

As temperature increase the enzyme & substrate gain more kinetic energy. There are more frequent successful collision, this increases the rate of reaction to its optimum at 400C. After this the increase in temperature causes H bonds to break. This means both the secondary and tertiary structures are lost and the enzymes active site is no longer complimentary to the substrate. The enzyme is denatured and the rate of reaction drops. No Enzyme substrate complexes can form.

Change in pH.

Any change in pH causes H bonds to break. This means both the secondary and tertiary structures are lost and the enzymes active site is no longer complimentary to the substrate. The enzyme is denatured and the rate of reaction drops. No Enzyme substrate complexes can form.



Change substrate concentration.

An increase in substrate increases rate of reaction as there is an increased chance in enzymes substrate complexes forming. At a certain substrate concentration the rate of reaction plateaus. This is due to the enzymes actives sites becoming saturated with substrate.

Q4. A scientist investigated the hydrolysis of starch. He added amylase to a suspension of starch and measured the concentration of maltose in the reaction mixture at regular intervals.

His results are shown in the graph below.

Explain the results shown in the graph.

1. (Rate of) increase in concentration of maltose slows as substrate/starch is used up

OR

High initial rate as plenty of starch/substrate/more E-S complexes; Reject ref. to amylase being used up

2. No increase after 25 minutes/at end/levels off because no substrate/starch left;

Accept 'little'

Ignore references to substrate a limiting factor

(2)

Biology questions

Q1.

	Answer	Acceptable answers	Mark
(i)	protease / pepsin	Reject any other enzyme given	(1)
(ii)	amino acid / amino acids	enzyme given	(1)
(iii)	 correct values read from graph (= 12 and 9) (1) 3 arbitrary units (1) 	award 2 marks for correct answer with no working ecf ignore + and - signs	(2)
(iv)	Any two of the	ignore any names of	(2)

following points at pH 2 the active site is distorted / enzyme changes shape / enzyme is denatured (1) so less successful collisions / less enzyme substrate complexes / enzyme cannot bind to substrate (1) optimum pH is 1.4 (1) pH 1 is closer to the enzyme's	enzymes	
to the enzyme's optimum pH (1)		

Q2.

	Answer	Acceptable answers	Mark
(a)(i)	C proteins		(1)
(a)(ii)	B speeds up a chemical reaction		(1)

Q3.

	Answer	Acceptable answers	Mark
(a)(i)	C proteins		(1)
(a)(ii)	B speeds up a chemical reaction		(1)
(b)(i)	Any two from the following points	State a difference in an amino acid e.g. black circle in amylase	(2)
(b)(ii)	Any two from the following points	named substrates enzymes are specific	(2)

	Indicative Content Mark					
QWC	* (c)	An explanation				
		including some of				
		the following points				
		 more oxygen 				
		given off at pH 7				
		 pH 7 is the 				
		optimum pH for this				
		enzyme				
		 reaction is 				
		faster/enzyme more				
		active in neutral				
		solution				
		very little				
		oxygen given off at				
		pH 5 and pH 9				
		• enzyme /				
		catalase less active				
		no oxygen siven eff at pl. 1 and				
		given off at pH 1 and				
		pH 14				
		no enzyme				
		activity				
		 enzyme denatured 				
		 shape of active site is 				
			(6)			
		changed	(6)			

	-	
		due to strong due to strong
		acid / low pH/strong alkali / high pH
		• no longer
		binds to hydrogen
		peroxide / substrate
Level	0	No rewardable content
1	1 - 2	
		a limited description is given on the
		results of the investigation that covers one
		aspect of the results e.g. identifies best pH
		or recognises when a reaction has or has
		not taken place.
		the answer communicates ideas
		using simple language and uses limited scientific terminology
		spelling, punctuation and grammar
		are used with limited accuracy
2	3 - 4	are deed man immed deed dey
		a simple explanation is given on at
		least one aspects of the results of the
		investigation and links this to enzyme
		activity e.g. enzymes work better at pH7 as
		more bubbles are released or inactive at
		pH1 as no bubbles are released.
		the answer communicates ideas
		showing some evidence of clarity and organisation and uses scientific terminology
		appropriately
		spelling, punctuation and grammar
		are used with some accuracy
3	5 - 6	,
		a detailed explanation of how pH
		affects enzyme activity (linking this to
		number of bubbles/oxygen production)
		including reference to denaturation and/or
		shape change of enzyme/active site
		the answer communicates ideas clearly and soborontly uses a range of
		clearly and coherently uses a range of scientific terminology accurately
		spelling, punctuation and grammar
		are used with few errors
		are asea with lew endis

Q4.

	Answer	Acceptable	Mark
		answers	
(i)	A amino acids		(1)
(ii)	B pepsin has an optimum pH of 3		
			(1)

(iii)	A description including two from the following points • pepsin has a lower activity • pepsin works at a lower pH • pepsin works within a narrower pH range • the optimum	ORA Accept: pepsin works in acidic conditions	
(i.d)	pH of pepsin is lower	Accept, reference	(2)
(iv)	A explanation linking the following points it is less active/activity only 6 arbitrary units (1) (starting to) denature (1) active site is changing shape (1) cannot bind to its substrate as well at this pH (1)	Accept: reference to pH9 being the optimum/pH11 is not the optimum	(2)

1

1

1

1

Physics questions

Q1.

(a) 50

Hz / hertz

allow Hertz

(b) (both) switches need to be closed / on

to complete the series circuit

or

to allow charge to flow

0

so there is a current in the circuit

(c) an answer of 7.5 (A) scores **3** marks an answer of 0.237(A) scores **2** marks

 $1800 = I^2 \times 32$

this mark may be awarded if P is incorrectly or not converted

 $I^2 = \frac{1800}{32}$

or

 $I^2 = 56.25$

this mark may be awarded if P is incorrectly or not converted

I = 7.5 (A)

this answer only

(d)

an answer of 300 (s) scores **3** marks an answer of 300 000 (s) scores **2** marks

$$1500 = \frac{450\ 000}{t}$$

this mark may be awarded if P is incorrectly or not converted

 $t = \frac{450\ 000}{1500}$

this mark may be awarded if P is incorrectly or not converted

t = 300 (s)

this answer only

[10]

1

1

1

1

1

1

1

1

Q2.

(a) correct circuit symbol

3 cells joined in series in correct orientation

e.g.

ignore absence of + symbol

(b) $R = \frac{12}{1.6}$

 $R = 7.5 (\Omega)$ an answer of 7.5 (Ω) scores **2** marks $4.0 (\Omega)$ (c) allow their answer to part (b) - 3.5 correctly calculated 1 (d) it decreases 1 the current would be higher (for the same p.d.) reason only scores if correct box is chosen or more than one path for charge to flow allow current for charge or total resistance is always less than the smallest individual resistance [7]

Chemistry questions

Q1.

(b)

 $q = 50.0 \times 4.18 \times 20.1 = 4201 \text{ (J)}$ Mass of alcohol burned = 0.54 g and $M_{\rm f}$ alcohol = 100.0 \therefore mol of alcohol = n = 0.54 / 100 = 0.0054Heat change per mole = $q / 1000n \, \text{OR} \, q / n$ = 778 kJ mol⁻¹ **OR** 778 000 J mol⁻¹

ΔH = -778 kJ mol⁻¹ **OR** -778 000 J mol⁻¹

M4 is for answer with negative sign for exothermic reaction

Units are tied to the final answer and must match

1

(c) Less negative than the reference

Temperature rise = 20.1

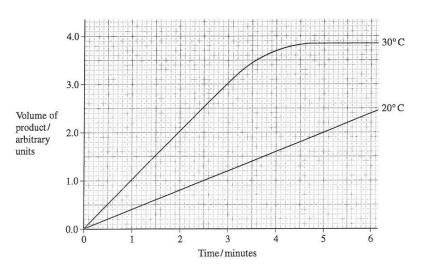
		1	
	Heat loss OR incomplete combustion OR evaporation of alcohol OR heat transferred to beaker not taken into account		
	That transferred to board flot taken into decount	1	
(d)	Water has a known density (of 1.0 g cm ⁻³)		
		1	
	Therefore, a volume of 50.0 cm ³ could be measured out	1	
			[9]

Highly recommended content

Calculating Rate

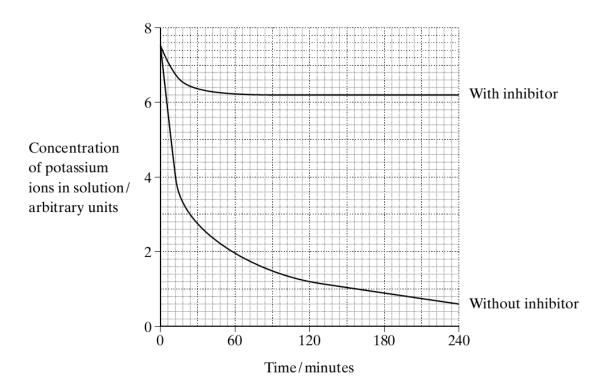
Practise Questions

Q1. Calculate the rate of reaction of the enzyme at 4 minutes at


<u>1.6</u>

ii) 30°C

$$3.7 - 2.2$$


4 =0.37

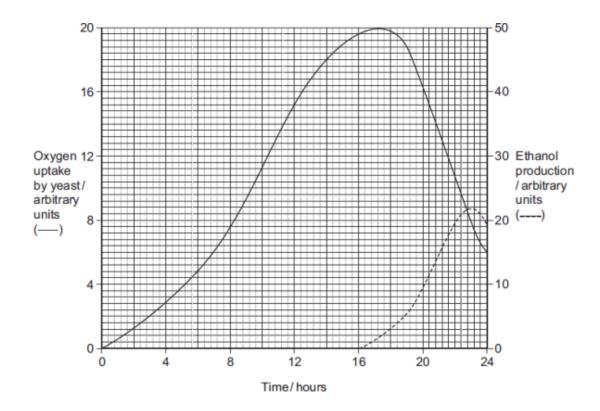
4 (a) A student carried out an investigation into the volume of product formed in an enzyme-controlled reaction at two different temperatures. Temperature was the only variable that was changed. The graph shows the results.

Q2.

Two samples of the roots of pea plants were placed in solutions containing potassium ions. An inhibitor to prevent respiration was added to one solution. The concentrations of potassium ions in the two solutions were measured at regular intervals. The graph shows the results.

i) Calculate the initial rate of uptake of potassium ions without inhibitor.

$$7.4 - 0$$
 = 0.62 AUmin -1


12

(1)

ii) Calculate the rate of uptake of potassium ions without inhibitor at 60 minutes.

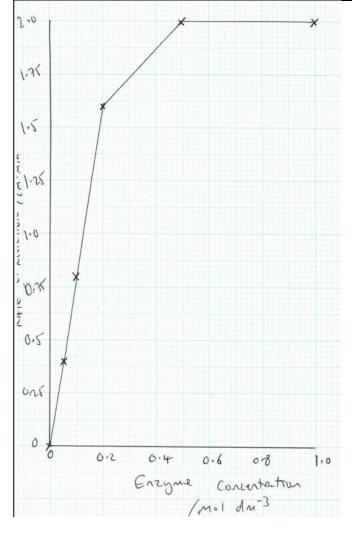
(1)

Q3. Yeast is a single-celled organism. A student investigated respiration in a population of yeast growing in a sealed container. His results are shown in the graph.

(a) Calculate the rate of oxygen uptake in arbitrary units per hour between 2 and 4 hours.

$$2.8 - 1.2$$

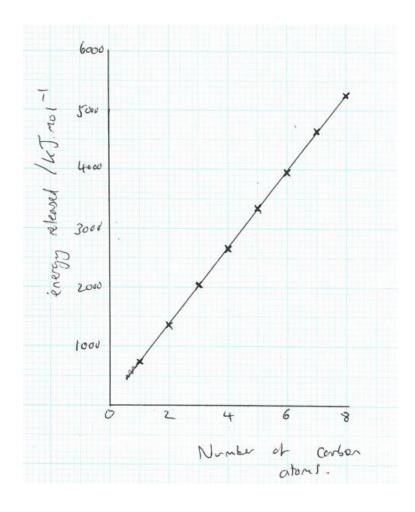
Answer arbitrary units per hour


(1)

Practical Skills

- 1. The enzyme catalase reacts with hydrogen peroxide to produce oxygen.
- a) Calculate the rate of reaction and fill in the table.
- b) Plot a graph of concentration against rate.
- c) Describe your results

As concentration of enzyme increases, the rate of reaction increases up to 0.5 mol dm-3 after this the rate levels off.


Concentration of Enzyme / mol		Rate of reaction / cm³ min ⁻¹
0	0	0
0.05	2	0.4
0.1	4	0.8
0.2	8	1.6
0.5	10	2.0
1.0	10	2.0

2. Use the information on burning fuels to answer the following:

alcohol	number of carbon atoms	energy released (kJ/mol)
methanol	1	726
ethanol	2	1367
propanol	3	2021
butanol	4	2676
pentanol	5	3329
hexanol	6	3984
heptanol	7	4638
octanol	8	5294

- a. Draw a graph of number of carbon atoms against energy released.
- b. Describe the trend seen.
 Linear / positive correlation between the number of carbon atoms and energy released. As the number of carbon atoms increases the energy released increases. Directly proportional.
- c. Carry out research to explain the trend seen.

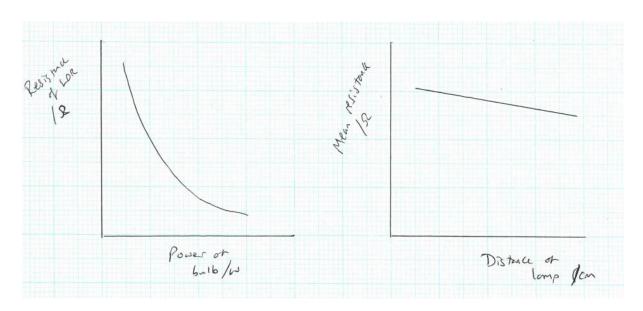
3.

Data Analysis

Physics: I-V Graphs

Electrical Circuits

Case Study A


Power of the light bulb (W)	Resistance of the LDR (Ω)
20	4000
40	1700
60	1000
80	700
100	500

	Case Study B			
Distance from	Distance from Resistance of the LDR (Ω)			
lamp to LDR (cm)	Trial 1	Trial 2	Trial 3	Mean
10	171	172	170	171
11	166	166	167	166
12	162	159	162	161
13	157	169	156	157
14	154	153	156	154

Based on the data that has been collected what hypothesis could the students have been investigating?

Draw a sketch graph of the results in Case Studies A and B.

Look at Case Study A. What conclusion can be made from the results? Give examples from the data.

Look at Case Study A. What would be an appropriate control variable for this experiment?

Look at Case Study B. What was the range of the independent variable?

Is this a suitable value for the range? Explain your answer.
Look at Case Studies A and B. Explain whether or not the results in Case Studies A and B are comparable. To gain full marks, your explanation should include appropriate examples from the results in Case Studies A and B.
How could the results from this investigation be useful?