A-level Physics

Summer Independent Learning Y12-13

PART 1: COMPULSORY WORK
Task 1 Complete practice questions on circuits
Task 2 Complete longer exam questions on electrical circuits
Task 3 Multiple choice questions

PART 2: STRONGLY RECOMMENDED WORK

Task 4 Address progression exam focus areas
Task 5 AS papers from 2020 complete, correct \& improve

Welcome to Y13 A-Level Physics, please complete the following tasks ready for your first day back at New College. You can either write on the document electronically, print the document out or write your notes and answers on paper to bring in for your first lesson in September.

You may have to research any knowledge or techniques you cannot immediately recall using common GCSE resources or other tutorials.

Please be aware that you will have an assessment on these topics shortly after beginning your A level Physics course and the knowledge covered is essential to understanding the subsequent content

Part 1: Compulsory work: Electricity

Task 1 (1-2 hrs + corrections and improvements)
C1. Combinations of resistors

What is the resistance of labelled combination?
C1.1
a) A
b) B
C1.2
a) C
b) D
C1.3
a) E
b) F

Resistivity

Complete the questions in the table:

Length $/ \mathrm{m}$	Wire thickness	Resistivity $/ \Omega$ m	Resistance $/ \Omega$
68	cross sectional area: $2.1 \times 10^{-6} \mathrm{~m}^{2}$	1.5×10^{-8}	C 1.4
C 1.5	cross sectional area: $0.50 \times 10^{-6} \mathrm{~m}^{2}$	4.9×10^{-7}	15
1.0	1.0 mm radius	4.9×10^{-7}	C 1.6
15000	1.0 cm diameter	1.5×10^{-7}	C 1.7

C1.8 Conventional domestic 13 A sockets are connected with copper cables with a cross sectional area of $2.5 \mathrm{~mm}^{2}$. Copper has a resistivity of $1.5 \times 10^{-8} \Omega \mathrm{~m}$. What is the resistance of 20 m of cable?

C1.9 A high voltage wire for transmission of electricity across the country is made of 10 aluminium wires (resistivity $=2.5 \times 10^{-8} \Omega \mathrm{~m}$) wound together with 15 copper wires (resistivity of $1.5 \times 10^{-8} \Omega \mathrm{~m}$). If all of the wires have a radius of 2.0 mm , calculate the overall resistance of 20 km of cable. (The aluminium is there to give strength to the cable.)

C2 Charge carriers

C2.1 How many electrons are needed to carry a charge of -6.00 C ?
C2.2 How many electrons flow past a point each second in a 5.0 mA electron beam?

C2.3 Alpha particles have twice the charge of an electron. What is the current caused by a radioactive source which emits 3000 alpha particles per second?
C2.4 An electron gun emits 3.0×10^{21} electrons in two minutes. What is the beam current?

C4 Kirchhoff's laws

If they are not given, fill out the currents and voltages for the question parts below:

	Current/A	Voltage/V
C4.1	(A) (a); (B) (b)	(A); (2.0) (B) (c)
C4.2	(C) (a); (D) (0.20)	(C) (b); (D) (c)
C4.3	(E) (a); (F) (0.20); (G) (d)	(E) (b); (F) (c); (G) (3.0)
C4.4	(H) (a); (I) (b)	(H) (3.0); (I) (c)
C4.5	(J) (a); (K) (3.0); (L) (c); (M) (2.0)	(J) (9.0); (K) (b); (L) (2.0); (M) (d)

C5 Potential Dividers

C5.1 What is the voltage across the bottom resistor in circuit (A)?
C5.2 In circuit (B):
a) What is the voltage across the bottom resistor?
b) What would the potential of the point between the resistors be if the $2.0 \mathrm{k} \Omega$ resistor were removed, leaving a gap in its place?
c) What would the potential of the point between the resistors be if the $4.0 \mathrm{k} \Omega$ resistor were removed, leaving a gap in its place?
d) What would the potential of the point between the resistors be if the $2.0 \mathrm{k} \Omega$ resistor were removed and a wire was attached in its place to complete the circuit?
e) A voltmeter with resistance $10 \mathrm{k} \Omega$ is used to measure the voltage across the $4.0 \mathrm{k} \Omega$ resistor. What would it read?

C5.3 What is the voltage across the bottom resistor in circuit (C)?
C5.4 What is the voltage across the bottom resistor in circuit (D)?

C5.5 What is the voltage across the bottom resistor in circuit (E)?

C5.6 What is the potential at G, the junction between the two resistors in parallel and the one in series, in circuit (F)?
C5.7 The 8.0Ω resistance in circuit (C) is a loudspeaker (the battery represents the amplifier). The other resistor is replaced with a variable resistor which can take all values between 0Ω and 30Ω, and is used as a volume control. This volume control changes the voltage across the speaker. What is the range of speaker voltages which are possible? (Give the minimum and maximum.)

C5.8 A thermistor has a resistance of 800Ω at a temperature of $16^{\circ} \mathrm{C}$. It is wired in series with a fixed resistor and a 9.0 V battery. A highresistance voltmeter is connected to give a 'temperature' reading.
a) If the voltage reading is to go up when the temperature increases, should the voltmeter be connected in parallel with the thermistor or the fixed resistor?
b) If the voltmeter needs to read 3.0 V when the temperature is $16^{\circ} \mathrm{C}$, what is the resistance of the fixed resistor?

C6 Internal resistance

C6.1 Give the missing values in the table:

e.m.f $/ \mathrm{V}$	Internal Resistance $/ \Omega$	Current /A	Terminal p.d. $/ \mathrm{V}$	Load Resistance $/ \Omega$
12.0	(a)	20	10.2	
12.0	0.12	72	(b)	
230.0	0.53	(c)	227.5	
6.0	(d)		4.2	4.3
(e)	3.2		21.3	12.0

C6.2 A school high voltage power supply unit has an e.m.f. of 5.0 kV . If short circuited, the current must be no more than 5.0 mA . Calculate the internal resistance of the supply needed in order to achieve this.
C6.3 A small battery is powering a powerful lamp. The terminal p.d. is 11.3 V , and the current flowing is 10.2 A . Assuming that the battery has an internal resistance of 2.4Ω, calculate the e.m.f. of the battery.
C6.4 A high-resistance voltmeter is connected in parallel with a portable battery used to start cars. Before the car is connected, the meter reads 12.4 V . When the car is connected, and a 64 A current is flowing, the meter reads 11.5 V .
a) What is the e.m.f. of the battery?
b) What is the internal resistance of the battery?

C6.5 You are building a power supply which needs to be able to handle currents of zero to 10 A . Assume that you build it to have a terminal p.d. of 13.5 V when disconnected, and 10.5 V when supplying 10 A . (a) State the e.m.f. (b) Calculate the internal resistance of the supply.

Task 2 (1-2 hrs + corrections and improvements)
Circuit questions

Tools at your disposal

$-\square^{-}$
ZOOM

Internal resistance	If you see the phrase, 'neglect internal resistance' then do so. Otherwise, assume that any cell / battery has an internal resistance.
Annotate	Any information you extract from the question or calculate should go onto circuit diagrams.
Simplify cells /	This can produce simplified circuits which you are more familiar with e.g. simple potential divider circuits or ones where $\varepsilon=$ $I(R+r)$ can easily be applied.

Potential divider formula

Current through cell

Kirchhoff's laws
$\boldsymbol{V}=\boldsymbol{I} \boldsymbol{R} \quad$ If you know two of $V, I \& R$ then you can always find the third. Use in conjunction with Kirchhoff's laws.
(Not for use on diodes and capacitors

- take care when using with bulbs as R depends upon V)

Complete the exam questions by applying the above tools

Worked example

Q1. The circuit in the diagram below contains four identical new cells, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}, each of emf 1.5 V and negligible internal resistance.

(NOTE: negligible $r \therefore$ only need to combine ε for cell) Equivalent circuit

(a) The resistance of each resistor is 4.0Ω
(i) Calculate the total resistance of the circuit.

(NOTE:
negligible r)
(iii) Calculate the current passing through cell A .
(NOTE: cell A!)

$$
\begin{aligned}
\varepsilon=I(R+\phi), & I_{T}=\varepsilon_{T} / R_{T}=4.5 / 6=0.75 \mathrm{~A} \\
I_{A} & =1 / 2 I_{T}=0.75 / 2=0.375=0.38 \mathrm{~A}
\end{aligned}
$$

(ii) Calculate the total emf of the combination of cells.
(NOTE:
negligible r)
(iv) Calculate the charge passing through cell A in five minutes, stating an appropriate unit.
(NOTE: cell A!) $\quad I=\Delta Q / \Delta t, \Delta \theta=I \Delta t=0.375 \times(5 \times 60)=112.5=110 \mathrm{C}$
(b) Each of the cells can provide the same amount of electrical energy before going flat. State and explain which two cells in this circuit you would expect to go flat first.

$$
\begin{aligned}
& \text { According to kuching's } 1^{\text {st }} \text { law ole current thrash cell } \\
& \text { wald dey } I_{C}=I_{B}=I_{A}+I_{A} \text {. As cells } A \& B \text { are identical } \\
& I_{A}=I_{b} \text { ad } I_{A}=I_{B}=1 / 2 I_{C}=1 / 2 I_{0} \text {. } \\
& \text { As } P=I \varepsilon \text { if reduce the current for the sore end, lent. } \\
& \text { pares is dissipated. Hence A \& B will last loges ad C\&D } \\
& \text { til go fat final }
\end{aligned}
$$

Mark scheme

cells C and D will 90 flat first or A and B last longer (1)
current/charge passing through cells C and D (per second) is double/more than that passing through A or B (1)
energy given to charge passing through cells per second is double or more than in cells C and $D(1)$ or in terms of power

Circuit questions

Q20.(a) The cell in Figure 1 has an emf of 3.0 V and negligible internal resistance.

Calculate the potential difference across the 8Ω resistor.

Figure 2

Figure 1
(b) Figure 2 shows the
(2)
same circuit with a voltmeter connected across the 8Ω resistor.

The voltmeter reads 1.8 V . Calculate the resistance of the voltmeter.

Q26. A battery of negligible internal resistance is connected to lamp P in parallel with lamp Q as shown in Figure 1. The emf of the

Figure 1 battery is 12 V .
(a) Lamp P is rated at 12 V 36 W and lamp Q is rated at 12 V 6 W.
(i) Calculate the current in the battery.
(ii) Calculate the resistance of P .
(iii) Calculate the resistance of Q .
(b) State and explain the effect on the brightness of the lamps in the circuit shown in Figure 1 if the battery has a significant internal resistance.
[6 lines available]

lamp Q

Figure 2

(c) The lamps are now reconnected to the 12 V battery in series as shown in Figure 2.
(i) Explain why the lamps will not be at their normal brightness in this circuit.
[5 lines available]
(ii) State and explain which of the lamps will be brighter assuming that the resistance of the lamps does not change significantly with temperature.
[4 lines available]

Circuit questions 2

Q31. \mathbf{X} and \mathbf{Y} are two lamps. \mathbf{X} is rated at 12 V 36 W and \mathbf{Y} at 4.5 V 2.0 W .
(a) Calculate the current in each lamp when it is operated at its correct working voltage.
X \qquad A
Y A
(b) The two lamps are connected in the circuit shown in the figure below. The battery has an emf of 24 V and negligible internal resistance. The resistors, R_{1} and R_{2} are chosen so that the lamps are operating at their correct working voltage.

(i) Calculate the pd across R_{1}.
answer .. V
(ii) Calculate the current in R_{1}.

> answer .. A
(iii) Calculate the resistance of R_{1}.
answer
Ω
(iv) Calculate the pd across R_{2}.
answer .. V
(v) Calculate the resistance of R_{2}.
answer
Ω
\qquad

Q32. A battery of emf 9.0 V and internal resistance, r, is connected in the circuit shown in the figure below.

(a) The current in the battery is 1.0 A .
(i) Calculate the pd between points \mathbf{A} and \mathbf{B} in the circuit.
answer = V
(ii) Calculate the internal resistance, r.
\qquad answer $=$ Ω
(iii) Calculate the total energy transformed by the battery in 5.0 minutes. answer = J
(iv) Calculate the percentage of the energy calculated in part (iii) that is dissipated in the battery in 5.0 minutes.
answer =
\qquad \%
(b) State and explain one reason why it is an advantage for a rechargeable battery to have a low internal resistance.
[4 lines available]

Circuit questions ChQ

Q1.Figure 1 shows a circuit including a thermistor \mathbf{T} in series with a variable resistor \mathbf{R}. The battery has negligible internal resistance.

Figure 1

The resistance-temperature ($R-\theta$) characteristic for \mathbf{T} is shown in Figure 2.
Figure 2

(a) The resistor and thermistor in Figure 1 make up a potential divider.

Explain what is meant by a potential divider.
[3 lines available]
(b) State and explain what happens to the voltmeter reading when the resistance of \mathbf{R} is increased while the temperature is kept constant.
[6 lines available]
(c) State and explain what happens to the ammeter reading when the temperature of the thermistor increases.
[4 lines available]
(d) The battery has an emf of 12.0 V . At a temperature of $0^{\circ} \mathrm{C}$ the resistance of the thermistor is $2.5 \times 10^{3} \Omega$.

The voltmeter is replaced by an alarm that sounds when the voltage across it exceeds 3.0 V .

Calculate the resistance of R that would cause the alarm to sound when the temperature of the thermistor is lowered to $0^{\circ} \mathrm{C}$.

$$
\text { resistance = } \Omega
$$

(e) State one change that you would make to the circuit so that instead of the alarm coming on when the temperature falls, it comes on when the temperature rises above a certain value.
[3 lines available]

Q9. The cells in the circuit shown in the figure below have zero internal resistance. Currents are in the directions shown by the arrows.

R_{1} is a variable resistor with a resistance that varies between 0 and 10Ω.
(a) Write down the relationship between currents I_{1}, I_{2} and I_{3}.
\qquad
(b) $\quad R_{1}$ is adjusted until it has a value of 0Ω.

State the potential difference across R_{3}.
potential difference = V
(c) Determine the current I_{2}.
current = A
(d) State and explain what happens to the potential difference across R_{2} as the resistance of R_{1} is gradually increased from zero.

Task 3 (2.5 hrs + corrections and improvements)
Attempt and mark the attached multiple-choice questions on electricity and circular motion (mark schemes at end of document). Once completed, correct and improve your work.
YOU MUST COMPLETE A MINIMUM OF 3 MULTIPLE CHOICE QUESTIONS FROM EACH TOPIC

10 Minutes on: 39 Circuit Basics

Q1. A rubber belt in an electrostatic machine has a width of 0.1 m and moves with speed $0.4 \mathrm{~m} \mathrm{~s}^{-1}$.
Each square metre of the belt carries a charge Q coulomb. The charge is removed and transferred to a metal sphere.

What is the charge collected by the sphere each second?
A
$0.016 Q$

B $\quad 0.04 Q$

C $\quad 0.25 Q$

D
$4 Q$
\bigcirc

Q2. In a cathode ray tube 7.5×10^{15} electrons strike the screen in 40 s . What current does this represent?

Charge of the electron is $1.6 \times 10^{-19} \mathrm{C}$.
A $\quad 1.3 \times 10^{-16} \mathrm{~A}$

B $\quad 5.3 \times 10^{-15} \mathrm{~A}$

C $\quad 3.0 \times 10^{-5} \mathrm{~A}$

D $\quad 1.2 \times 10^{-3} \mathrm{~A}$ \square

Q3. The current in a wire is 20 mA .
How many electrons pass a point in the wire in 2 minutes?
A $\quad 2.5 \times 10^{17}$
B $\quad 1.5 \times 10^{19}$
C
2.5×10^{20} \square
D $\quad 1.5 \times 10^{22}$ \square
(Total 1 mark)
Q4. A gas containing doubly-charged ions flows to give an electric current of 0.64 A How many ions pass a point in 1.0 minute?

A $\quad 2.0 \times 10^{18}$ \square
B $\quad 4.0 \times 10^{18}$ \square
C $\quad 1.2 \times 10^{20}$

D $\quad 2.4 \times 10^{20}$ \square
(Total 1 mark)
Q5. Which is equivalent to the ohm?
A
$\mathrm{J} \mathrm{C}^{-2} \mathrm{~s}^{-1}$ \square
$B \quad \mathrm{~J} \mathrm{C}^{-2} \mathrm{~s}$ \square
C J s \bigcirc
D $\quad \mathrm{J} \mathrm{s}^{-1}$
\bigcirc

Q6. What is a unit for potential difference?
A $\quad \mathrm{A} \Omega^{-1}$ \square
B
C^{-1} \square
C $\quad \mathrm{JA}^{-1} \mathrm{~s}^{-1}$ \bigcirc
D W A \square
(Total 1 mark)
Q7. The diagrams show a battery connected to networks of ideal diodes and resistors. In which circuit will a charge flow in the battery?

A

C

A 0
B 0
C 0
D 0

D

10 Minutes on: $40 \mathrm{I}-\mathrm{V}$ Graphs

Q1. Which row shows the resistances of an ideal ammeter and an ideal voltmeter?

	Ideal ammeter	Ideal voltmeter	
A	infinite	infinite	\bigcirc
B	infinite	zero	\bigcirc
C	zero	infinite	\bigcirc
D	zero	zero	\bigcirc

Q2. A voltmeter is used to measure potential difference for a component \mathbf{X}.
Which row gives the position and ideal resistance for the voltmeter?

	Position	Ideal resistance	
A	in series with X	infinite	\circ
B	in series with X	zero	0
C	in parallel with X	infinite	0
D	in parallel with X	zero	0

Q3. The graph shows the current-voltage (I-V) characteristics of a filament lamp.

What is the resistance of the filament when the potential difference (pd) across it is 4.0 V ?
A $\quad 500 \Omega$

B $\quad 1700 \Omega$

C $\quad 2000 \Omega$

D $\quad 6000 \Omega$ \square

Q4. A resistor and diode are connected in series with a variable power supply as shown in the diagram.

Which best shows the characteristic for the combination of the resistor and diode?

A

C
current
A 0
B 0
C O
\square
D 0
D 0

B

Q5. Which is the current-voltage characteristic graph for a filament lamp up to its working voltage?

A

C

B

D

A 0
C 0
B 0
D \square

Q6. The table shows corresponding values of potential difference V and current I for four electrical components A, B, C and D.

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
V / V	I / A	I / A	I / A	I / A
0	0.0	0.0	0.0	0.0
2	0.0	0.3	0.4	0.3
4	0.1	0.6	0.8	0.6
6	0.7	0.9	1.2	0.9
8	1.4	1.2	1.6	1.1
10	2.1	1.5	2.0	1.3

Which component is an ohmic conductor with the greatest resistance?
A 0
C
D $\quad \bigcirc$

Q7. The graph shows how the potential difference V across an electrical component varies with current I in the component.

A tangent has been drawn on the curve at point P for a current of I_{2}.

What is the resistance of the electrical component when the current in the component is I_{2} ?
A
$\frac{V_{3}-V_{1}}{2 I_{2}}$ \square
B $\quad \frac{V_{3}-V_{1}}{I_{3}-I_{1}}$ \square
C
$\frac{V_{2}}{I_{2}}$

D

$$
\frac{2 V_{2}}{I_{2}-I_{1}}
$$

\square

10 Minutes on: 41 Resistivity

Q1. A resistor with resistance R is made from metal wire of resistivity ρ. The length of the wire is L. What is the diameter of the wire?

A $\sqrt{\frac{2 \rho R}{\pi L}} \quad 0$
B $\sqrt{\frac{2 \rho L}{\pi R}}$

C $\quad 2 \sqrt{\frac{\rho L}{\pi R}}$

D $\quad 2 \sqrt{\frac{\rho R}{\pi L}}$

Q2. A metal wire has a length l and a cross-sectional area A. When a potential difference V is applied to the wire, there is a current I in the wire.

What is the resistivity of the wire?
A $\quad \frac{I A}{V l}$

B $\quad \frac{V A}{I l}$

C
$\frac{I l}{V A}$

D
$\frac{V l}{I A}$

(Total 1 mark)
Q3. A wire has a resistance R.
What is the resistance when both the length and radius of the wire are doubled?
A $\quad \frac{R}{4}$

B
$\frac{R}{2}$

C
$2 R$

D $\quad 4 R$
\circ

Q4. Which graph shows how the resistance per unit length r of a wire varies with diameter D of the wire?
A

B

C

D

A

C 0
B
D

Q5. When a constant potential difference (pd) is applied across the ends of a uniform wire there is a current I in the wire.

The wire is replaced by one made from the same material, but of double the length and double the diameter. The same pd is applied across the ends.

What is the new current?
A
$4 I$
0
B
$2 I$ \square
C $\quad \frac{I}{2}$ \square
D
$\frac{I}{4}$ \square

Q6. A solid copper cylinder has a volume $1.3 \times 10^{-4} \mathrm{~m}^{3}$ and length 15 cm . Copper has a resistivity of $1.7 \times 10^{-8} \Omega \mathrm{~m}$.

What is the resistance between the two ends of the copper cylinder??
A $\quad 2.9 \times 10^{-6} \Omega$ \square
B $\quad 2.0 \times 10^{-5} \Omega$ \square
C $\quad 2.0 \times 10^{-3} \Omega$ \square
D $\quad 2.9 \times 10^{-2} \Omega$ \square

Q7. A copper wire of length 1.3 m has a resistance of 0.70Ω.
The wire has a diameter of 0.50 mm
Calculate the resistivity of the copper in the wire.
A $\quad 1.1 \times 10^{-5} \Omega \mathrm{~m}$ \square
B $\quad 1.1 \times 10^{-7} \Omega \mathrm{~m}$ \square
C $\quad 2.1 \times 10^{-7} \Omega \mathrm{~m}$ \bigcirc

D $\quad 4.2 \times 10^{-7} \Omega \mathrm{~m}$ \square
(Total 1 mark)

10 Minutes on: 42 Resistance and Temperature

Q1. Which graph shows the variation of the resistance with temperature for an ntc thermistor?

A

B

D

A 0
C $\quad 0$
D 0

Q2. When the temperature of a copper wire increases, its ability to conduct electricity
A remains the same. \square
B increases.
C decreases.

D remains the same at first and then increases.

(Total 1 mark)
Q3 Which statement about superconductors is correct?
A When a material becomes a superconductor, its resistivity is almost zero.

B The temperature at which a material becomes a superconductor is called the critical temperature.

C When current passes through a superconductor the pd across it becomes a maximum.

D Copper is a superconductor at room temperature.

(Total 1 mark)
Q4. Superconductors are used to
A increase the strength of electricity cables.

B make light dependent resistors.

C produce strong magnetic fields.

D increase the rate of heat energy transfer.

(Total 1 mark)
Q5. A superconductors has a critical temperature.
Which graph shows the variation of resistivity ρ with temperature T for this superconductor?

Q6 A cable consists of superconducting wires attached in parallel to a steel wire.

What is the purpose of the steel wire in the cable?
A to increase the critical temperature of the superconductor

B to increase the strength of the cable
C to reduce the resistance of the cable when it is superconducting

D to reduce the current in the cable \square
(Total 1 mark)
Q7. A circuit consists of a cell, a thermistor, a fixed resistor and two ammeters.

The cell has a constant electromotive force and negligible internal resistance. Readings from the two ammeters are taken.

Which row describes what happens to the current in each ammeter when the temperature of the thermistor decreases?

	Current in ammeter $\mathbf{A}_{\mathbf{1}}$	Current in ammeter $\mathbf{A}_{\mathbf{2}}$	
A	Decreases	Unchanged	\circ
B	Decreases	Increases	\circ
C	Increases	Decreases	\circ
D	Increases	Unchanged	\circ

10 minutes on: 43 Resistors in Series and Parallel

Q1. Which resistor arrangement has the greatest value of resistance?

(Total 1 mark)
Q2. The diagram shows a network of resistors connected between the terminals \mathbf{P} and \mathbf{Q}.
The resistance of each resistor is shown.

What is the effective resistance between \mathbf{P} and \mathbf{Q} ?
A
R \square
B
$2 R$ \square
C
$3 R$ \square
D
$4 R$
0

Q3. Resistors of resistance R, R and $3 R$ are connected as shown.

What is the resistance of the arrangement?
A
$\frac{3 R}{7}$ \square
B $\quad \frac{7 R}{3}$

C $\quad \frac{5 R}{6}$

D $\quad \frac{6 R}{5}$

(Total 1 mark)

Q4. The table shows the resistivity, length and cross-sectional area of wires P and Q.

	resistivity	length	cross-sectional area
wire P	ρ	L	A
wire Q	$\frac{\rho}{4}$	L	$\frac{A}{2}$

The resistance of wire P is R.
What is the total resistance of the wires when they are connected in parallel?
A $\quad \frac{R}{9}$

B $\quad \frac{R}{3}$

C $\quad \frac{2 R}{3}$

D $\quad \frac{3 R}{2}$

Q5. The two resistors shown are both uniform cylinders of equal length made from the same conducting putty.

The diameter of \mathbf{Y} is twice that of \mathbf{X}. The resistance of \mathbf{Y} is R.
What is the total resistance of the combination?
A $\frac{4 R}{5}$

B $\quad 3 R$

C
$4 R$

D
5R

(Total 1 mark)

Q6. The current in the cell is 10 A as shown.

What is the current in the 2.0Ω resistor?
A $\quad 0.35 \mathrm{~A}$
\circ
B $\quad 2.86 \mathrm{~A}$

C $\quad 3.50 \mathrm{~A}$

D
7.14 A
\bigcirc

Q7. The combined resistance of n identical resistors connected in parallel is R_{n}. Which statement correctly describes the variation of R_{n} as n increases?

A R_{n} decreases linearly as n increases

B $\quad R_{n}$ decreases non-linearly as n increases 0

C R_{n} increases linearly as n increases

D R_{n} increases non-linearly as n increases

10 minutes on: 44 Series and Parallel Circuits

Q1. The diagram shows the currents in a set of wires.

What is the magnitude of the current at \mathbf{X} ?
A zero
\bigcirc
B 2 A
\bigcirc
C $\quad 3 \mathrm{~A}$
0
D
6 A
\bigcirc

Q2. The diagram shows part of a circuit and the currents in the circuit.

What is the potential difference between point P and earth?
A $\quad 60 \mathrm{~V}$ \square
B $\quad 100 \mathrm{~V}$
\bigcirc
$\begin{array}{lll}\text { C } & 120 \mathrm{~V} & 0 \\ \text { D } & 140 \mathrm{~V} & \circ\end{array}$
(Total 1 mark)

Q3. The graph shows the current-voltage $(I-V)$ characteristics for two components.

The two components are connected in parallel with a 12 V battery that has negligible internal resistance.

What is the current in the battery?

A	7.9 mA	0
B	14.5 mA	0
C	15.8 mA	0
D	23.0 mA	0

Q4. Two cylindrical wires \mathbf{P} and \mathbf{Q} are of equal length and made of the same material.
The diameter of \mathbf{P} is greater than that of \mathbf{Q}.
\mathbf{P} and \mathbf{Q} are connected in series and the ends of this arrangement are connected to a power supply.

Which two quantities are the same for \mathbf{P} and \mathbf{Q} ?

A	potential difference across wire	resistivity	\square
B	resistivity	current	\square
C	current	resistance	\square
D	resistance	potential difference across wire	\circ

(Total 1 mark)
Q5. In the circuit shown, a potential difference of 3.0 V is applied across $\mathbf{X Y}$.

What is the current in the 5Ω resistor?
A
0.38 A

B $\quad 0.60 \mathrm{~A}$

C $\quad 0.75 \mathrm{~A}$

D $\quad 2.7 \mathrm{~A}$
\bigcirc

Q6. The circuit shows a cell with negligible internal resistance connected in a circuit with three resistors, an ammeter and a voltmeter.

Which row shows the readings on the ammeter and voltmeter?

	Current / A	Voltage / V	
A	0.075	0.75	\bigcirc
B	0.075	1.50	\bigcirc
C	0.150	0.75	\circ
D	0.150	1.50	\circ

Q7. The battery in this circuit has an emf of 4.2 V and negligible internal resistance.

What are the readings on the voltmeter when the switch is open (off) and when the switch is closed (on)?

	Open	Closed
\mathbf{A}	0 V	2.1 V
\mathbf{B}	4.2 V	2.1 V
\mathbf{C}	0 V	1.4 V

10 minutes on: 45 Potential Dividers Basics

Q1. In this resistor network, the emf of the supply is 12 V and it has negligible internal resistance.

What is the reading on a voltmeter connected between points \mathbf{X} and \mathbf{Y} ?
A
0 V \square
B
1 V

C
3 V

D
4 V
\bigcirc

Q2. In the circuit shown below, each of the resistors has the same resistance.

A voltmeter with very high resistance is connected between two points in the circuit.
Between which two points of connection would the voltmeter read zero?
A $\quad Q$ and U

B $\quad \mathrm{P}$ and T
C
Q and W \square
D
S and U \square

Q3. The potential difference between points \mathbf{X} and \mathbf{Y} is V.

What is the potential difference between \mathbf{P} and \mathbf{Q} ?
A zero \square
B $\quad \frac{V}{3}$

C $\quad \frac{V}{2}$

D

$$
\frac{2 V}{3}
$$

(Total 1 mark)
Q4. Two resistors \mathbf{X} and \mathbf{Y} are connected in series with a power supply of emf 30 V and negligible internal resistance.

The resistors are made from wire of the same material. The wires have the same length. \mathbf{X} uses wire of diameter d and \mathbf{Y} uses wire of diameter 2d.

What is the reading on the voltmeter?
A 10 V

C $\quad 20 \mathrm{~V}$

B $\quad 15 \mathrm{~V}$
\bigcirc
D $\quad 24 \mathrm{~V}$

Q5. The circuit shown is used to supply a variable potential difference (pd) to another circuit.

Which graph shows how the pd supplied V varies as the moving contact C is moved from position P to position Q ?

A 0
B 0
C 0
D 0

Q6. Resistors \mathbf{X} and \mathbf{Y} are connected in series with a 6.0 V battery of negligible internal resistance. \mathbf{X} has resistance R and \mathbf{Y} has resistance $\frac{R}{2}$.

A voltmeter of resistance R is connected across \mathbf{Y}.

What is the reading on the voltmeter?
A $\quad 0.0 \mathrm{~V}$

C $\quad 3.0 \mathrm{~V}$
0
B $\quad 1.5 \mathrm{~V}$
0
D
4.5 V
\bigcirc

Q7. The diagram shows a 12 V battery connected to a resistor of resistance R. The voltmeter reads 10 V when the switch is closed.

What is the internal resistance r of the battery?
A
$\frac{R}{6}$

B $\quad \frac{R}{5}$

C
$5 R$

D
$6 R$ \square

10 minutes on: 46 Sensing Circuits

Q1.
The figure shows a light dependent resistor (LDR) and fixed resistor R connected in series across a cell. The internal resistance of the cell is negligible.

	Ammeter reading	Voltmeter reading	
A	decreases	increases	\circ
B	decreases	decreases	\circ
C	increases	increases	\circ
D	increases	decreases	\circ

Q2. In the circuit shown in the diagram the cell has negligible internal resistance.

What happens to the reading of both meters when the resistance of R is decreased?

	Reading of ammeter	Reading of voltmeter	
A	increases	increases	\circ
B	increases	decreases	\circ
C	decreases	increases	\circ
D	unchanged	decreases	0

Q3. The diagram shows a temperature-sensing circuit.

The temperature of the thermistor is decreased.
Which row shows the changes to the ammeter reading and the voltmeter reading?

	Ammeter reading	Voltmeter reading	
A	increases	increases	\circ
B	increases	decreases	\circ
C	decreases	decreases	\circ
D	decreases	increases	\circ

Q4. In the circuit below, the voltmeter reading is zero.

When the temperature of the thermistor \mathbf{T} is increased, the voltmeter reading changes.
Which change to the circuit will restore the voltmeter to zero?
A a reduction in the emf of the cell

B a reduction in the resistance of \mathbf{P}

C an increase in the resistance of \mathbf{Q}
D a reduction in the resistance of \mathbf{R} \square

Q5. A circuit consists of a cell, a thermistor, a fixed resistor and two ammeters.

The cell has a constant electromotive force and negligible internal resistance. Readings from the two ammeters are taken.

Which row describes what happens to the current in each ammeter when the temperature of the thermistor decreases?

	Current in ammeter $\mathbf{A}_{\mathbf{1}}$	Current in ammeter $\mathbf{A}_{\boldsymbol{2}}$	
A	Decreases	Unchanged	\circ
B	Decreases	Increases	\circ
C	Increases	Decreases	\circ
D	Increases	Unchanged	\circ

Q6. A voltmeter has a resistance of $4.0 \mathrm{k} \Omega$ and reads 1.0 V for every scale division on the meter.
A power supply of emf 20 V and negligible internal resistance is connected across this voltmeter and a thermistor in series. The voltmeter reads two divisions.

What is the value of the thermistor?

A	$44 \mathrm{k} \Omega$	0
B	$36 \mathrm{k} \Omega$	0

C $\quad 4.4 \mathrm{k} \Omega$

D $\quad 3.6 \mathrm{k} \Omega$

(Total 1 mark)
Q7. A potential divider circuit consists of a battery connected across a thermistor and variable resistor in series.

Which of the following causes the potential difference (pd) across the thermistor to increase?
A increasing the temperature of the thermistor

B increasing the resistance of the variable resistor

C reducing the emf of the battery

D adding a resistor across the variable resistor

10 minutes on: 47 EMF and Internal Resistance

Q1. The cell in the circuit has an emf of 2.0 V . When the variable resistor has a resistance of 4.0Ω, the potential difference (pd) across the terminals of the cell is 1.0 V .

What is the pd across the terminals of the cell when the resistance of the variable resistor is 12 Ω ?
A $\quad 0.25 \mathrm{~V}$ \square
B $\quad 0.75 \mathrm{~V}$ \square
C $\quad 1.33 \mathrm{~V}$ \circ
D
1.50 V \square

Q2. The cell in the following circuit has an emf of 2.0 V and an internal resistance of 1.0Ω.

The digital voltmeter reads 1.6 V . What is the resistance of R ?
A
0.4Ω \square
B $\quad 1.0 \Omega$ \square
C $\quad 2.0 \Omega$ \square
D
4.0Ω
\circ

Q3. A student investigates how the potential difference V across the terminals of a cell varies with the current I in the cell.

Which graph correctly shows how V varies with I ?
A 0
B 0
C 0
D 0

Q4. A battery is connected to a 10Ω resistor and a switch in series. A voltmeter is connected across the battery. When the switch is open (off) the voltmeter reads 1.45 V . When the switch is closed the reading is 1.26 V .

What is the internal resistance of the battery?
A $\quad 0.66 \Omega$ \square
B $\quad 0.76 \Omega$ \square
C $\quad 1.3 \Omega$ \square
D
1.5Ω
\square

Q5. In the circuit below, the potential difference across the light emitting diode (LED) is 1.8 V when it is emitting light. The current in the circuit is 20 mA .

What is the value of the resistor R ?
A 80Ω \square
B $\quad 90 \Omega$ \bigcirc
C $\quad 150 \Omega$

D $\quad 160 \Omega$ \square

Q6. In the circuit shown, the cell has an emf of 12 V and an internal resistance which is not negligible.

When the resistance of the variable resistor is 10Ω the voltmeter reads 10 V and the ammeter reads 1.0 A .

The resistance of the variable resistor is changed to 5Ω.
What is the new reading on the ammeter?
A
1.4 A
0
B
1.7 A

C
2.0 A

D
2.4 A \square

Q7. In the circuit, the reading of the voltmeter is V.
When the switch is closed the reading becomes $\frac{V}{3}$.

What is the internal resistance of the cell?

A 0.33Ω	0

B $0.67 \Omega \quad 0$

C	4.0Ω	\circ

D	6.0Ω	\circ

(Total 1 mark)

10 minutes on: 48 Cells in Series and Parallel

Q1. Two identical batteries each of emf 1.5 V and internal resistance 1.6Ω are connected in parallel. A 2.4Ω resistor is connected in parallel with this combination.

What is the current in the 2.4Ω resistor?
A $\quad 0.38 \mathrm{~A}$
\bigcirc
C
0.75 A
0
B $\quad 0.47 \mathrm{~A}$
\circ
D $\quad 0.94 \mathrm{~A}$
\bigcirc

Q2. Three identical cells, each of emf 1.5 V and internal resistance 6.0Ω, are connected to resistor \mathbf{R}. The resistance of \mathbf{R} is 6.0Ω.

What is the current in \mathbf{R} ?
A $\quad 0.19 \mathrm{~A}$ \square
B $\quad 0.25 \mathrm{~A}$ \square
C $\quad 0.56 \mathrm{~A}$ \square

D	0.75 A	0

Q3. Three cells each have an emf $\varepsilon=1.5 \mathrm{~V}$ and an internal resistance $r=0.6 \Omega$.
Which combination of these cells will deliver a total emf of 1.5 V and a maximum current of 7.5 A ?

A \bigcirc
B O
C \bigcirc
D \bigcirc

Q4. Three identical cells, each of internal resistance R, are connected in series with an external resistor of resistance R. The current in the external resistor is l. If one of the cells is reversed in the circuit, what is the new current in the external resistor?
A $\frac{I}{3}$

B $\quad \frac{4 I}{9}$

C $\quad \frac{I}{2}$

D $\quad \frac{2 I}{3}$

(Total 1 mark)
Q5. A resistor of resistance R and three identical cells of emf E and internal resistance r are connected as shown.

What is the current in the resistor?
A $\frac{3 E}{(3 R+r)}$

B $\quad \frac{9 E}{(3 R+r)}$

C
$\frac{E}{R}$

D
$\frac{3 E}{R}$ \square

Q6. A cell C of negligible resistance and a switch are in series with a resistor R. The switch is moved to the on (closed) position for a time t.

Which change reduces the amount of charge flowing through R in time t ?

A add an identical cell in parallel with C \square
B add an identical cell in series with C

C add a second resistor in series with R

D add a second resistor in parallel with R \bigcirc

Q7. A circuit consists of two identical cells, a resistor, an ammeter and a voltmeter. The cells each have an emf of 3.0 V and the resistor has a resistance of 12Ω

The cells have negligible internal resistance.

Which row shows the readings on the voltmeter and ammeter?

	Voltage / V	Current / A	
A	3.0	0.25	\bigcirc
B	3.0	0.50	\bigcirc
C	6.0	0.25	\circ
D	6.0	0.50	\bigcirc

10 minutes on: 49 Electrical Energy

Q1. What quantity is measured in kW h ?
A charge

B current \square
C energy \bigcirc
D power \square
(Total 1 mark)
Q2. A battery of negligible internal resistance and an emf of 12 V is connected in series with a heating element. The heating element has a resistance of 6.5Ω when in operation.

What is the energy transferred by the heating element when operating for 5 minutes?

A	111 J	0
B	390 J	0
C	6650 J	0
D	23400 J	\circ

Q3. The cell in the following circuit has an emf (electromotive force) of 6.0 V and an internal resistance of 3.0Ω. The resistance of the variable resistor is set to 12Ω.

How much electrical energy is converted into thermal energy within the cell in 1 minute?
A $\quad 0.48 \mathrm{~J}$
B 29 J
C
45 J \square
D
144 J \square

Q4. An electric motor lifts a load of weight W through a vertical height h in time t.
The potential difference across the motor is V and the current through it is I.
What is the efficiency of the motor?
A $\frac{W h t}{V I}$
\bigcirc
B $\quad \frac{V I}{W h t}$

C $\quad \frac{W h}{V I t}$

D $\quad \frac{V I t}{W h}$

Q5. The capacity of a portable charger is rated in ampere hours (Ah). A charger of capacity $1 \mathrm{~A} h$ can provide 1 A for 1 hour at its working voltage.

One charger has a capacity of 1800 mA h at a working voltage of 3.7 V .
What is the energy stored in this charger?

A	6.5 kJ	0
B	24 kJ	0
C	400 kJ	0
D	24 kJ	0

Q6. Which is equivalent to the ohm?
A $\quad \mathrm{J} \mathrm{C}^{-2} \mathrm{~s}^{-1}$
\bigcirc
$B \quad \mathrm{JC}^{-2} \mathrm{~s}$

C Js

D $\quad \mathrm{J} \mathrm{s}^{-1}$
\bigcirc

Q7. In the circuit shown, V is a voltmeter with a very high resistance. The internal resistance of the cell, r, is equal to the external resistance in the circuit.

Which of the following is not equal to the emf of the cell?
A the reading of the voltmeter when the switch S is open

B the chemical energy changed to electrical energy when unit charge 0

C twice the reading of the voltmeter when the switch S is closed \square
D the electrical energy produced when unit current passes through the cell

10 minutes on: 50 Electrical Power

Q1. Which pair of graphs shows the variation of power dissipated with current, and the variation of power dissipated with voltage, for a resistor of constant resistance?
A

C

A 0
B 0
C \square

D \square

Q2. Which is a unit of power?
A $\quad \mathrm{C}^{2} \Omega \mathrm{~s}^{-1}$

B $\quad \mathrm{J} \mathrm{C}^{-1} \mathrm{~s}^{-1}$

C $\quad \mathrm{VC} \mathrm{s}^{-1}$

D $\quad V^{2} \Omega$ \circ

Q3. A pd V is applied across a resistor. Another identical resistor is then connected in series with it and the same $\mathrm{pd} V$ is applied across the combination.

Which statement is incorrect?
A The total resistance is doubled. \square
B The pd across one resistor is $\frac{V}{2}$

C The current in the resistors is halved.

D The power dissipated in one resistor is halved. \circ
(Total 1 mark)
Q4. A mobile phone operates at a constant power of 200 mW
It has a 3.7 V lithium-ion battery that has a charge capacity of 9400 C What is the time taken for the battery to discharge completely?

A	2 hours	0
B	48 hours	0
C	120 hours	0
D	140 hours	0

Q5. A filament lamp with resistance 12Ω is operated at a power of 36 W .
How much charge flows through the filament lamp during 15 minutes?
A $\quad 26$ C

B $\quad 1.6 \mathrm{kC}$ \square
C $\quad 2.7 \mathrm{kC}$

D $\quad 6.5 \mathrm{kC}$
\bigcirc

Q6. A cell of negligible internal resistance is connected to a resistor and a lamp in parallel as shown.

What is the power dissipated by the lamp?
A $\quad 14 \mathrm{~W}$

B $\quad 16 \mathrm{~W}$
C $\quad 24 \mathrm{~W}$ \square
D $\quad 38 \mathrm{~W}$ \square

Q7. A power of 100 kW at a potential difference of 10 kV is transmitted to a load resistor through cables of total resistance 5.0Ω.

What is the power loss in the cables?
A $\quad 50 \mathrm{~W}$
\bigcirc
B $\quad 0.5 \mathrm{~kW}$ \square
C $\quad 100 \mathrm{~kW}$ \square
D $\quad 20 \mathrm{MW}$ \square

Solutions (Task 1)
Cl Elechric caranits

1. $6+3=9 \Omega$
2. $\left((1+2)^{-1}+4^{-1}\right)^{-1}=(1 / 3+1 / 4)^{-1}=(7 / 2)^{-1}=12 / 7=1.714$ $=9.0 \Omega$
3. $\left(6^{-1}+3^{-1}\right)^{-1}=R_{11}=(1 / 6+2 / 6)^{-1}$
4.

$$
\begin{aligned}
=(3 / 6)^{-1}=6 / 3 & =2 \Omega \\
& =2.0 \Omega
\end{aligned}
$$

5. $3+4+12=19.0 \Omega$.

$$
=19 \Omega
$$

5.

$$
\begin{aligned}
R_{11} & =\left(3^{-1}+4^{-1}+12^{-1}\right)^{-1}=\left(\frac{4}{12}+\frac{3}{12}+1 / 12\right)^{-1} \\
& =(8 / 12)^{-1}=3 / 2=1.52
\end{aligned}
$$

7. $R=S l / A=\frac{1.5 \times 10^{-8} \times 68}{2.1 \times 10^{-6}}=0.4857 \Omega=0.49 \Omega$
8. $R=g L / A, l=\frac{R A}{\rho}=\frac{15 \times 0.5 \times 10^{-6}}{4.9 \times 10^{-7}}=15.31=15 \mathrm{M}$
9. $R=g l / A=\frac{\rho l}{\pi r^{2}}=\frac{4.9910^{-7} \times 1}{\pi\left(10^{-3}\right)^{2}}=0.15597=0.16 \Omega$.
10. $R=\rho \frac{1}{A}=\rho l / \mathrm{Td}^{2} / 4=\frac{4 \rho C}{\pi d^{2}}=\frac{4 \times 1.5010^{-7} \times 1.5 \sqrt{10^{4}}}{\pi \times\left(10^{-2}\right)^{2}}=28.6=29 \Omega$
11. $R=\rho l / A=\frac{1.5 \times 10^{-7} \times 20}{2.5 \times\left(10^{-3}\right)^{2}}=0.12 \Omega$
12.

$$
\begin{aligned}
& R_{m}=\frac{\rho l}{A}=\frac{\rho l}{\pi r^{2}}=\frac{2.5 \pi \times 10^{-8} \times 20010^{3}}{10 \times \pi \times\left(2 \times 10^{-3}\right)^{2}}=3.9788=4.0 \Omega . \\
& R_{C}=\rho l / A=\frac{\rho l / \pi r^{2}}{}=1.5 \pi 0^{-8} \times 200010^{3} \\
& 15 \times \pi \times\left(2 \times 10^{-3}\right)^{2}
\end{aligned}=1.5915=1.6 \Omega .
$$

C2 CHARCE CARFIDES I

1. $n=\theta / e=\frac{-6.00}{1.6 \times 10^{-19}}=3.75 \times 10^{19}$
2. $\frac{5 \times 10^{-3}}{1.6 \times 10^{-19}}=3.125 \times 10^{16}=3.1 \times 10^{16} \cdot \mathrm{~s}^{-1}$
3. $I=\frac{\Delta Q}{\Delta t}=\frac{\Delta(n)}{\Delta t}=\quad \frac{\Delta \cap}{\Delta t} q=3000 \times\left(2 \times 1.6 \times 10^{-14}\right)$

$$
=9.60 \times 10^{-16} \mathrm{~A}
$$

4. $I=\frac{\Delta Q}{\Delta t}=\frac{\Delta(n q)}{\Delta t}=\frac{-3 \times 10^{21} \times 1.6 \times 10^{-19}}{60 \times 2}=4.0 \mathrm{~A}$

C4 KIRCHMOFF'S CTHS.

1. 0.40 A
2. 30 mA
3. 0.40 A
4. $V=6-2=4.0 \mathrm{~V}$
5. 30, A 6.9.0-1.5=7.5 \quad 7. $0.4-0.2=0.20 \mathrm{~A}$
6. 6.0 V
7. 3.0 A
8. 6.0 V
9. $9-2=7.0 \mathrm{~V}$
10. $0.4-0.2=0.20 \mathrm{~A}$
11. 6.0 V
12. $3-2=1 \cdot 0 \mathrm{~A}$
13. $6-3=3.0 \mathrm{~V}$
14. 2.0 V
15. 0.20 A

C5 porantir dividors

$$
V_{R}=V_{T} \frac{R_{2}}{R_{T}} \Rightarrow 1.3 .0 \mathrm{~V}
$$

2. $V=12 \times 4 \times 6.650$
3. $V=24 \times \frac{8}{23}=8 \cdot 348$

$$
=8.3 \mathrm{~V}
$$

4. $V=240 \times \frac{1}{48}=5.0 \mathrm{~V}$
5. $V=5 \times 10^{3} \times \frac{0.2 \times 18^{8}}{10.2 \times 10^{6}}=\frac{10^{3}}{10.2}=98.04=98 \mathrm{~V}$
6. $R_{11}^{-1}=\left(6^{-1}+3^{-1}\right)^{-1}=(1 / 6+2 / 6)^{-1}$

$$
\begin{aligned}
& =(1 / 6+2 / 6) \\
& =6 / 3=2.0 \Omega
\end{aligned} \quad \therefore V=12 \times \frac{4}{6}=8.0 \mathrm{~V}
$$

$\left.\begin{array}{c}(4 . O V \text { acouss } 11 \\ \text { consilates }\end{array}\right)$
7. $\quad R \rightarrow \infty \therefore$ all pre Eny dropted acoss gap (nale accoss 4.0 h) $\therefore \frac{1}{-10 v}$

9. $12 \sqrt{120} \therefore V=12 \mathrm{~V}$.
10.
11.

$$
\begin{aligned}
& R_{V}=0 \Omega, V=24 \times 8 / 8=24 \mathrm{~V} \\
& R_{V}=30 \Omega, V=24 \times \frac{8}{38}=5.053=5.1 \mathrm{~V} \\
& 5.1 \leq V_{s t} \leq 24 \mathrm{~V}
\end{aligned}
$$

12.9.
if $\uparrow T, d R_{\mathrm{rh}}$ unt $P V$

$$
V_{m}=V \frac{R_{m}}{R_{T}}, \underbrace{V_{R}=V \frac{R}{R_{T}}}_{\substack{\therefore \text { Need accross } \\ \text { rixed reillor } \\ \text { ar R/RT }}}
$$

dren $[1]$.

$$
\begin{gathered}
V_{R}=V \frac{R}{R+R_{\text {m }} .} \\
V_{\text {e }} / V=R / R+R_{\text {m }} \\
\left.V_{\text {E }}\left(R+R_{\text {mi }}\right)=R \quad L R\right]
\end{gathered}
$$

$$
\begin{aligned}
R_{\text {th }}+R & =R V / V_{l} \\
R_{R} & =R\left(V / V_{k}-1\right) \\
R & =\frac{R_{R}}{V / V_{R}-1}=\frac{800}{9 / 3-1}=400 \Omega
\end{aligned}
$$

(6 internal resistance
1.

$$
\text { 1. } \begin{aligned}
& V_{T}=\varepsilon-V, V=\varepsilon-V_{T}=12-10.2=1.8 \mathrm{~V} \\
& V=I_{r}, r=V / I=\frac{1.8}{20}=0.090 \Omega=90 \mathrm{~m} \Omega
\end{aligned}
$$

2. $V_{T}=\varepsilon-V=\varepsilon-I_{r}=12-72 \times 0.12=3.36=3.4 \mathrm{~V}$
3. $V_{T}=\varepsilon-I r$

$$
I_{r}=\varepsilon-V_{T}, I=\frac{\varepsilon-V_{T}}{r}=\frac{230-227.5}{0.53}=4.717=4.7 \mathrm{~A}
$$

4. $\varepsilon=I(R+r)$

$$
\begin{array}{ll}
\varepsilon=I(R+r) & I=V_{T} / R=\frac{4.2}{4.3}=0.9767 \mathrm{~A} . \\
\varepsilon=V_{T}+I r \Rightarrow r=\frac{\varepsilon-V_{r}}{I}=\frac{6-4.2}{0.9767}=1.843=1.8 \Omega
\end{array}
$$

5. $I=V_{T / R}=\frac{21.3}{12}=1.775 \mathrm{~A}$,

$$
\begin{aligned}
V_{T} & =\varepsilon-I_{r} \\
q & =V_{T}+I_{r}
\end{aligned}=21.3+1.775 \times 3.20 .26=27 \mathrm{~V}
$$

6. $\varepsilon=I(R+r)$ i $R=0, \varepsilon=I r$.

$$
r=\varepsilon / I=\frac{5 \times 10^{3}}{5 \times 10^{-3}}=1.0 \times 10^{6} \Omega=1.0 \mathrm{M} \Omega
$$

7.

$$
\begin{aligned}
V_{T} & =\varepsilon-V \\
& =\varepsilon-I_{r} \\
\varepsilon & =V_{T}+I_{r}
\end{aligned}=11.3+10.2 \times 2.4
$$

8.12 .4 V
as voltmeter has $R \rightarrow \infty, \quad I \rightarrow O A$ $\therefore v=I_{r} \rightarrow O v$ \& $\varepsilon=V_{T}$.
9.

$$
\begin{aligned}
V_{T}=\varepsilon-I r, r=\frac{\varepsilon-V_{T}}{I}=\frac{12.4-11.5}{64} & =0.01406 \\
& =0.014 \Omega
\end{aligned}
$$

10. $0 \leqslant I \leqslant 10 \mathrm{~A}, q=13.5 \mathrm{~V}$

$$
\begin{aligned}
V_{T} & =\varepsilon-V \\
& =\varepsilon-I_{r}, r=\frac{\varepsilon-V_{T}}{I}=\frac{13.5-10.5}{10}=3 / 10=0.20 \Omega
\end{aligned}
$$

Circuit questions solutions (Task 2)

M20.(a) potential divider formula used or current found to be 0.25 A
allow 1 s.f.
2.0 V
1.0 V (with working) gains 1 mark
(b) main current $=1.2 \mathrm{~V} / 4 \Omega=0.3$ (A)
$\mathrm{R}_{\text {toal }}=1.8 \mathrm{~V} / 0.3 \mathrm{~A}=6 \Omega$ or $I_{8}=0.225(\mathrm{~A})$
$\mathrm{R}_{\mathrm{v}}=24 \Omega$

C1

C1
A1

M26.
(a) (i) (use of $P=V I)$
$I=36 / 12+6 / 12 \checkmark=3.5(A) \checkmark$
(ii) (use of $V=I R$) $R=12 / 3=4(\Omega) \checkmark$
(iii) $\quad R=12 / 0.50=24 \sqrt{ }(\Omega)$
(b) terminal pd/voltage across lamp is now less OR current is less \checkmark due to lost volts across internal resistance OR due to higher resistance \checkmark lamps less bright \checkmark
(c) (i) current through lamps is reduced as resistance is increased orpd across lamps is reduced as voltage is shared
hence power is less OR lamps dimmer \checkmark
(ii) lamp Q is brighter \checkmark
lamp Q has the higher resistance hence pd/voltage across is greater \checkmark current is the same for both \checkmark hence power of Q greater \checkmark

Circuit questions 2: solutions

M31.
(a) (use of $P=\mathrm{V} / l$)
$l=36 / 12=3.0 \mathrm{~A} \checkmark$
$l=2.0 / 4.5=0.44 \mathrm{~A}$
(b) (i) $\mathrm{pd}=24-12=12 \mathrm{~V}$
(ii) current $=3.0+0.44=3.44 \mathrm{~A} \checkmark$
(iii) $R_{1}=12 / 3.44=3.5 \Omega$
(iv) $\mathrm{pd}=12-4.5-7.5 \vee \checkmark$
(v) $\quad R_{2}=7.5 / 0.44=17 \Omega \checkmark$
(c) (i) (circuit) resistance increases
current is lower (reducing voltmeter reading)
or correct potential divider argument
(ii) pd across Y or current through Y increases hence power/rate of energy dissipation greater or temperature of lamp increases
(a) (i) (use of $V=I R$)
$\mathrm{R}_{\text {Lotal }}=1$ (ohm)
$V=1 \times 1=1.0 \mathrm{~V}$
(ii) (use of $V=I R$)
$R=9.0 / 1.0=9.0 \Omega \checkmark$
$r=9.0-1.0-6.0=2.0 \Omega \checkmark$
or use of $(E=I(R+r))$
$9.0=1(7+r) \checkmark$
$r=9.0-7.0=2.0 \Omega \checkmark$
M32.
(iii) (use of $W=V / t)$
$W=9.0 \times 1.0 \times 5 \times 60$
$W=2700 \mathrm{~J} \checkmark$
(iv) energy dissipated in internal resistance $=12 \times 2.0 \times 5 \times 60=600$ (J)
percentage $=100 \times 600 / 2700=22 \% \quad \checkmark$ CE from part aii
(b) internal resistance limits current \checkmark
hence can provide higher current \checkmark
or energy wasted in internal resistance/battery
less energy wasted (with lower internal resistance)
or charges quicker
as current higher or less energy wasted
or (lower internal resistance) means higher terminal pd/voltage as less pd across internal resistance or mention of lost volts \checkmark

Circuit questions ChQ: solutions

M1.(a) A combination of resistors in series connected across a voltage source (to produce a required pd) \checkmark Reference to splitting (not dividing) pd
(b) When R increases, pd across R increases \checkmark

Pd across $R+p d$ across $T=$ supply $p d \checkmark$
So pd across T / voltmeter reading decreases \checkmark
Alternative:
Use of $V=V_{\text {tot }}\left(\frac{R_{1}}{R_{1}+R_{2}}\right) \quad \checkmark$
$V_{\text {tot }}$ and R_{2} remain constant
So V increases when R_{1} increases \checkmark
(c) At higher temp, resistance of T is lower \checkmark

So circuit resistance is lower, so current / ammeter reading increases \checkmark
(d) Resistance of $\mathrm{T}=2500 \Omega$

Current through $\mathrm{T}=\mathrm{V} / \mathrm{R}=3 / 2500=1.2 \times 10^{-3} \mathrm{~A} \checkmark$
(Allow alternative using $V_{1} / R_{1}=V_{2} / R_{2}$)
pd across $\mathrm{R}=12-3=9 \mathrm{~V}$
The first mark is working out the current
Resistance of $\mathrm{R}=\mathrm{V} / \mathrm{I}=9 / 1.2 \times 10^{-3}=7500 \Omega \checkmark$
The second mark is for the final answer
(e) Connect the alarm across R instead of across $\mathrm{T} \checkmark$
allow: use a thermistor with a ptc instead of ntc.

M9.(a) $\quad I_{3}=I_{1}+I_{2} \checkmark$
(b) 10 V
(c) $\mathrm{I}_{2}=(12-10) / 10 \checkmark$

Allow ce for 10 V
$=0.2 \mathrm{~A}$,
The first mark is for the pd
The second is for the final answer
(d) pd across R_{2} increases

As R_{1} increases, pd across R_{1} increases as pd= $I_{1} R_{1} \checkmark$
First mark is for identifying that pd across R_{1} increases (from zero).
pd across $\mathrm{R}_{3}=10 \mathrm{~V}-$ pd across R_{1}
Therefore pd across R_{3} decreases \checkmark
Second mark is for identifying that pd across R_{3} must decrease
pd across $\mathrm{R}_{2}=12$ - pd across R_{3}
Therefore pd across R_{2} increases \checkmark
Third mark is for identifying that this means pd across R2 must increase

Solutions for 10 minutes on:
(FULL WORKED SOLUTIONS ON TEAMS)

(FULL WORKED SOLUTIONS ON TEAMS)

Part 2: Strongly recommended work

Task 4 (2 hrs + corrections and improvements)

Following feedback on the progression exam, choose two or three areas to develop.
For each area consider the following.
WHAT: Improve your exam technique
HOW: Testing yourself with exam questions then correcting / improving your work
RESOURCES: Past Papers, 1234 questions, textbook questions, PhysicsAndMathsTutor, SaveMyExams, A-level physics online, TOPT, StudyMind, Isaac Physics, completing outstanding booklet questions etc

WHAT: Review the content \& create revision resources
HOW: by using different sources to create condensed notes, flash cards, mind maps, summarising key definitions, annotated key diagrams / graphs etc.
RESOURCES: Notes, textbooks, SaveMyExams (topic qns \& notes), videos, complete A3 placemats

WHAT: Improve your retrieval
HOW: Practice recall frequently.
RESOURCES: Try a mind dump on a topic, practice flash cards, or try to explain to topic out loud or to a friend, Quizlet, Seneca, Carousel learning, PMT flashcards etc.

Task 5 (3 hrs + corrections and improvements)

Complete AS past papers from 2020 (link)
then correct and improve your answers with the mark schemes.

(click on QR codes for individual links)

