

Summer Independent Learning:

A level Mathematics

Year 11 into Year 12

Welcome to A level maths!

These activities have been designed to help you prepare for the initial assessment in September, which will indicate how well-prepared you are for A level study. It is based on key GCSE Higher content which forms the basis for our first few A level topics.

If you have access to a printer please print the first 2 pages of this document and fill them in as you complete the tasks. If not, please make a copy of each table and fill it in.

You do not need to print the other pages and should complete all questions **on separate paper** so you have enough room to show full detailed methods. Don't be tempted to just write the answers!

Please bring your **completed tables** and **all the work you have done** to your first lesson.

Section 1: Preparation Work

- 1. Complete the practice questions for each topic. The videos are provided for additional support.
- 2. Mark and correct your work in a different colour.
- 3. Red/amber/green rate your confidence with this topic.
- 4. Make a note of any questions you would like to ask in September.

Торіс	Done and marked? ✓	RAG Rating	Comments/questions
<u>B1 Indices</u>			
<u>B2 Surds</u>			
<u>B3 Quadratics</u>			
<u>B4 Simultaneous equations</u>			
<u>B5 Inequalities</u>			
Rearranging equations			
E1 Triangle geometry			

Section 2: Practice Papers

- 1. Attempt <u>Practice Test 1</u> without referring to any notes or videos.
- 2. Mark and correct your work in a different colour.
- 3. Red/amber/green rate how well you did with this topic.
- 4. Go back to the Task 1 questions/videos and do some more practice for any red/amber rated topics.

Торіс	RAG Rating	Comments/questions
B1 Indices		
B2 Surds		
B3 Quadratics		
B4 Simultaneous equations		
B5 Inequalities		
E1 Triangle geometry		
Rearranging equations		

5. Repeat steps 1-4 for Practice Test 2.

Торіс	RAG Rating	Comments/questions
B1 Indices		
B2 Surds		
B3 Quadratics		
B4 Simultaneous equations		
B5 Inequalities		
E1 Triangle geometry		
Rearranging equations		

B1 Indices

Videos:

https://youtu.be/11ThXgU08S0 https://youtu.be/v5bn4HZrmQs https://youtu.be/W0h4rHj88ys

Question 1

Express in the form x^k

a \sqrt{x}	b $\frac{1}{\sqrt[3]{x}}$	c $x^2 \times \sqrt{x}$	d $\frac{\sqrt[4]{x}}{x}$
e $\sqrt{x^3}$	f $\sqrt{x} \times \sqrt[3]{x}$	g $(\sqrt{x})^5$	h $\sqrt[3]{x^2} \times (\sqrt{x})^3$
i $p^{\frac{1}{4}} \div p^{-\frac{1}{5}}$	i $(3x^{\frac{2}{5}})^2$	k $v \times v^{\frac{5}{6}} \times v^{-\frac{3}{2}}$	$4t^{\frac{3}{2}} \div 12t^{\frac{1}{2}}$

	$p \div p$	j (5x)	$\mathbf{k} \mathbf{y} \wedge \mathbf{y} \mathbf{y} \mathbf{y}$	1 + l + 12l
m	$\frac{b^2 \times b^{\frac{1}{4}}}{b^{\frac{1}{2}}}$	n $\frac{y^{\frac{1}{2}} \times y^{\frac{1}{3}}}{y}$	$0 \frac{4x^{\frac{2}{3}} \times 3x^{-\frac{1}{6}}}{x^{\frac{3}{2}}}$	$\mathbf{p} \frac{2a \times a^{\frac{3}{4}}}{8a^{-\frac{1}{2}}}$
	b^2	y	$6x^{\frac{3}{4}}$	8 <i>a</i> ²

Question 2

Express each of the following in the form 3^y , where y is a function of x.

a 9 ^x	b 81^{x+1}	c 27 [‡]	d $(\frac{1}{3})^x$	e 9^{2x-1}	f $(\frac{1}{27})^{x+2}$
-------------------------	---------------------	-------------------	----------------------------	---------------------	---------------------------------

Exam style question

Solve the equation

 $25^x = 5^{4x+1}$.

B1 Indices – Answers

<u>Question 1</u>

$$\mathbf{a} = x^{\frac{1}{2}} \qquad \mathbf{b} = x^{-\frac{1}{3}} \qquad \mathbf{c} = x^{2} \times x^{\frac{1}{2}} = x^{\frac{5}{2}} \qquad \mathbf{d} = \frac{x^{\frac{1}{4}}}{x} = x^{-\frac{3}{4}}$$
$$\mathbf{e} = (x^{3})^{\frac{1}{2}} = x^{\frac{3}{2}} \qquad \mathbf{f} = x^{\frac{1}{2}} \times x^{\frac{1}{3}} = x^{\frac{5}{6}} \qquad \mathbf{g} = (x^{\frac{1}{2}})^{5} = x^{\frac{3}{2}} \qquad \mathbf{h} = x^{\frac{2}{3}} \times x^{\frac{3}{2}} = x^{\frac{13}{6}}$$
$$\mathbf{i} = p^{\frac{1}{4} - (-\frac{1}{5})} = p^{\frac{9}{20}} \qquad \mathbf{j} = 9x^{\frac{4}{5}} \qquad \mathbf{k} = y^{1 + \frac{5}{6} - \frac{3}{2}} = y^{\frac{1}{3}} \qquad \mathbf{l} = \frac{1}{3}t$$
$$\mathbf{m} = b^{2 + \frac{1}{4} - \frac{1}{2}} = b^{\frac{7}{4}} \qquad \mathbf{n} = y^{\frac{1}{2} + \frac{1}{3} - 1} = y^{-\frac{1}{6}} \qquad \mathbf{o} = 2x^{\frac{2}{3} + (-\frac{1}{6}) - \frac{3}{4}} = 2x^{-\frac{1}{4}} \qquad \mathbf{p} = \frac{1}{4}a^{1 + \frac{3}{4} - (-\frac{1}{2})} = \frac{1}{4}a^{\frac{9}{4}}$$

Question 2

a
$$= (3^2)^x = 3^{2x}$$

b $= (3^4)^{x+1} = 3^{4x+4}$
c $= (3^3)^{\frac{x}{4}} = 3^{\frac{3}{4}x}$
d $= (3^{-1})^x = 3^{-x}$
e $= (3^2)^{2x-1} = 3^{4x-2}$
f $= (3^{-3})^{x+2} = 3^{-3x-6}$

Exam style question

$$25^{x} = (5^{2})^{x} = 5^{4x+1}$$

$$5^{2x} = 5^{4x+1}$$

$$2x = 4x + 1$$

$$x = -\frac{1}{2}$$

B2 Surds

Video: https://youtu.be/jHelde32Ytl

Question 1

a $\sqrt{18} + \sqrt{50}$ **b** $\sqrt{48} - \sqrt{27}$ **c** $2\sqrt{8} + \sqrt{72}$

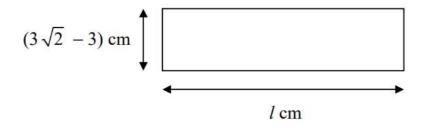
Question 2

Express in the form $a + b\sqrt{3}$

a
$$\sqrt{3}(2+\sqrt{3})$$
 b $4-\sqrt{3}-2(1-\sqrt{3})$ **c** $(1+\sqrt{3})(2+\sqrt{3})$

Question 3

Express each of the following as simply as possible with a rational denominator.


a
$$\frac{1}{\sqrt{5}}$$
 b $\frac{2}{\sqrt{3}}$ **c** $\frac{1}{\sqrt{8}}$ **d** $\frac{14}{\sqrt{7}}$

Question 4

Express each of the following as simply as possible with a rational denominator.

a
$$\frac{1}{\sqrt{2}+1}$$
 b $\frac{4}{\sqrt{3}-1}$ **c** $\frac{1}{\sqrt{6}-2}$ **d** $\frac{3}{2+\sqrt{3}}$

Exam style question

The diagram shows a rectangle measuring $(3\sqrt{2} - 3)$ cm by l cm.

Given that the area of the rectangle is 6 cm^2 , find the exact value of *l* in its simplest form.

B2 Surds – Answers

Question 1

a =
$$3\sqrt{2} + 5\sqrt{2} = 8\sqrt{2}$$
 b = $4\sqrt{3} - 3\sqrt{3} = \sqrt{3}$ **c** = $4\sqrt{2} + 6\sqrt{2} = 10\sqrt{2}$

Question 2

a =
$$3 + 2\sqrt{3}$$

= $2 + \sqrt{3}$ = $2 + \sqrt{3}$ = $2 + \sqrt{3} + 2\sqrt{3} + 3$
= $2 + \sqrt{3}$ = $5 + 3\sqrt{3}$

Question 3

a
$$= \frac{1}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{1}{5}\sqrt{5}$$
 b $= \frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{2}{3}\sqrt{3}$ **c** $= \frac{1}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{1}{4}\sqrt{2}$

$$\mathbf{d} = \frac{14}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = 2\sqrt{7}$$

Question 4

$$\mathbf{a} = \frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1} = \frac{\sqrt{2}-1}{2-1} = \sqrt{2}-1$$
$$\mathbf{b} = \frac{4}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} = \frac{4(\sqrt{3}+1)}{3-1} = 2(\sqrt{3}+1)$$
$$\mathbf{c} = \frac{1}{\sqrt{6}-2} \times \frac{\sqrt{6}+2}{\sqrt{6}+2} = \frac{\sqrt{6}+2}{6-4} = \frac{1}{2}(\sqrt{6}+2) \text{ or } \frac{1}{2}\sqrt{6}+1$$
$$\mathbf{d} = \frac{3}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}} = \frac{3(2-\sqrt{3})}{4-3} = 3(2-\sqrt{3})$$

Exam style question

$$l = \frac{6}{3\sqrt{2}-3} = \frac{6}{3\sqrt{2}-3} \times \frac{3\sqrt{2}+3}{3\sqrt{2}+3} = \frac{6(3\sqrt{2}+3)}{18-9}$$
$$l = \frac{18(\sqrt{2}+1)}{9} = 2\sqrt{2} + 2$$

B3 Quadratics

Videos:

https://youtu.be/Pziws8ojnlk https://youtu.be/sn_joGVj15w https://youtu.be/kk7p6hjn7hQ https://youtu.be/tolqbX_NXHo

Question 1

Factorise:

(a)	$x^2 - 3x + 2$	(b)	$x^2 + 5x + 6$	(c)	$x^2 - 9$
(d)	$x^2 - 10x + 25$	(e)	$2x^2 - 3x + 1$	(f)	$5x^2 - 17x + 6$

Question 2

Hence, sketch (showing the coordinates of any points of intersections with coordinate axes):

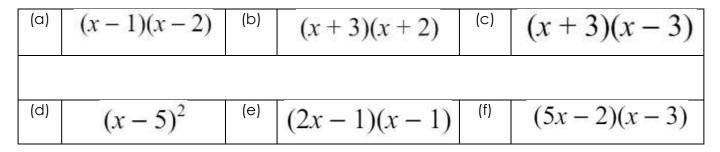
(a)	$y = x^2 - 3x + 2$	(b)	$y = x^2 + 5x + 6$	(c)	$y = x^2 - 9$
(d)	$y = x^2 - 10x + 25$	(e)	$y = 2x^2 - 3x + 1$	(f)	$y = 5x^2 - 17x + 6$

Question 3

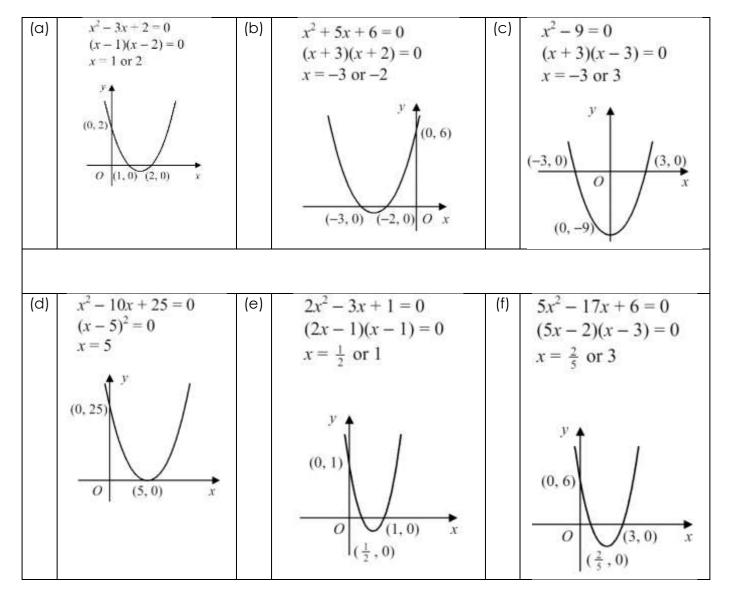
Complete the square, leaving in the form $(x + a)^2 + b$ or $a(x + b)^2 + c$, where appropriate

(a)	$x^2 - 4x + 3$	(b)	$x^2 + 8x + 30$	(c)	$x^2 - 5x + 4$
(d)	$x^2 + 3x + 3$	(e)	$4x^2 + 8x + 3$	(f)	$8 + 2x - x^2$

Question 4


Hence, sketch (showing the coordinates of turning point, and y intercept):

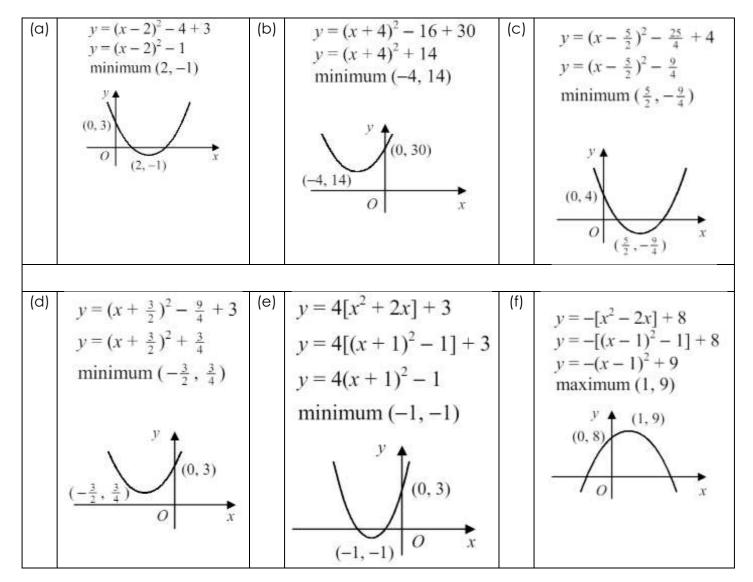
(a)	$y = x^2 - 4x + 3$	(b)	$y = x^2 + 8x + 30$	(c)	$y = x^2 - 5x + 4$
(d)	$y = x^2 + 3x + 3$	(e)	$y = 4x^2 + 8x + 3$	(f)	$y = 8 + 2x - x^2$



B3 Quadratics – Answers

Question 1

Question 2



Question 3

(a)	$y = (x - 2)^{2} - 4 + 3$ $y = (x - 2)^{2} - 1$	(b)	$y = (x + 4)^{2} - 16 + 30$ $y = (x + 4)^{2} + 14$	(C)	$y = (x - \frac{5}{2})^2 - \frac{25}{4} + 4$ $y = (x - \frac{5}{2})^2 - \frac{9}{4}$
(d)	$y = (x + \frac{3}{2})^2 - \frac{9}{4} + 3$ $y = (x + \frac{3}{2})^2 + \frac{3}{4}$	(e)	$y = 4[x^{2} + 2x] + 3$ $y = 4[(x + 1)^{2} - 1] + 3$ $y = 4(x + 1)^{2} - 1$	(f)	$y = -[x^{2} - 2x] + 8$ $y = -[(x - 1)^{2} - 1] + 8$ $y = -(x - 1)^{2} + 9$

Question 4

B4 Simultaneous equations

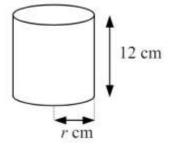
Video: https://youtu.be/4SRtwS5unwE

Solve these pairs of simultaneous equations:

(a)	y = 2x + 6 $y = 3 - 4x$	(b)	3x + 3y + 4 = 0 5x - 2y - 5 = 0	(c)	$x^2 - y + 3 = 0$ $x - y + 5 = 0$
(d)	$2x^2 - y - 8x = 0$	(e)	$x^2 - 4y - y^2 = 0$	(f)	<i>xy</i> = 6
	x + y + 3 = 0		x - 2y = 0		x - y = 5

(a)	$2x + 6 = 3 - 4x$ $x = -\frac{1}{2}$ $\therefore x = -\frac{1}{2}, y = 5$	(b)	6x + 6y + 8 = 0 15x - 6y - 15 = 0 adding 21x - 7 = 0 $x = \frac{1}{3}$ $\therefore x = \frac{1}{3}, y = -\frac{5}{3}$	(c)	$x + 2 = x^{2} - 4$ $x^{2} - x - 6 = 0$ (x + 2)(x - 3) = 0 x = -2 or 3 ∴ (-2, 0) and (3, 5)
(d)	Subbitution is also fine adding $2x^2 - 7x + 3 = 0$ (2x - 1)(x - 3) = 0 $x = \frac{1}{2}$ or 3 $\therefore x = \frac{1}{2}, y = -\frac{7}{2}$ or $x = 3, y = -6$	(e)	x = 2y sub. $(2y)^2 - 4y - y^2 = 0$ $3y^2 - 4y = 0$ y(3y - 4) = 0 $y = 0 \text{ or } \frac{4}{3}$ ∴ $x = 0, y = 0$ or $x = \frac{8}{3}, y = \frac{4}{3}$	(f)	y = x - 5 sub. x(x - 5) = 6 $x^2 - 5x - 6 = 0$ (x + 1)(x - 6) = 0 x = -1 or 6 ∴ $x = -1, y = -6$ or $x = 6, y = 1$

B4 Simultaneous equations – Answers


B5 Inequalities

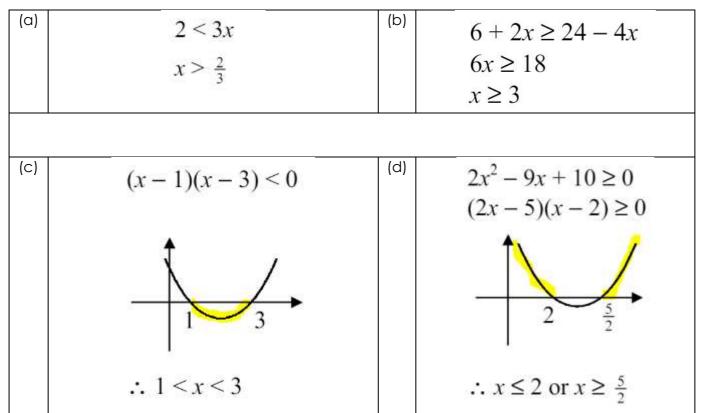
Video: https://youtu.be/wDut-In 7Wg

Solve the following inequalities:

(a)	12 - 3x < 10	(b)	$2(3+x) \ge 4(6-x)$
(c)	$x^2 - 4x + 3 < 0$	(d)	$9x - 2x^2 \le 10$

Exam style question

A sealed metal container for food is a cylinder of height 12 cm and base radius r cm.


Given that the surface area of the container must be at most 128π cm²,

a show that $r^2 + 12r - 64 \le 0$.

b Hence find the maximum value of *r*.

B5 Inequalities – Answers

Exam style question

a S.A =
$$2\pi r^2 + 2\pi rh = 2\pi r^2 + 24\pi r$$

S.A $\leq 128\pi$ $\therefore 2\pi r^2 + 24\pi r \leq 128\pi$
 $r^2 + 12r \leq 64$
 $r^2 + 12r - 64 \leq 0$
b $(r+16)(r-4) \leq 0$
 $-16 \leq r \leq 4$
 \therefore maximum value of $r = 4$

We will look at finding maximum values for these kinds of shapes more formally in A level Maths

Rearranging equations

Question 1

Make *a* the subject x(a - e) = d

Question 2

Make x the subject m(y - x) = t

Question 3

Make x the subject of $x + a = \frac{x+b}{c}$

<u>Question 4</u>

Make *y* the subject of $y(\sqrt{3} + \sqrt{2}) = x$ and write it in the form $y = x(\sqrt{a} + \sqrt{b})$

Question 5

Make v the subject of

$$C = \frac{v^2 - ta}{x}$$

<u>Question 6</u>

Rearrange to make x the subject of $\frac{2}{x} + 5 = 6y$

Question 7 Make y the subject of

$$\sqrt{\frac{m(y+a)}{y}} = g$$

Question 8

A cylinder has a radius of 3cm and height, h. The total surface area is $30x \ cm^2$.

Find an expression for the surface area and write h in terms of x and π .

Rearranging equations – Answers

Question 1

$$xa - xe = d$$

$$xa = d + xe$$

$$a = \frac{d + xe}{x}$$

$$a = \frac{d + xe}{x}$$

$$a = \frac{d}{x} + e$$
Can you see that
these are equivalent?

Question 2

$$my - mx = t$$
$$my = t + mx$$
$$mx = my - t$$
$$x = \frac{my - t}{m}$$

Question 3

$$c(x + a) = x + b$$

$$cx + ca - x = b$$

$$cx - x = b - ca$$

$$x(c - 1) = b - ca$$

$$x = \frac{b - ca}{c - 1}$$

Question 4

$$y = \frac{x}{\sqrt{3} + \sqrt{2}}$$

$$y = \frac{x}{\sqrt{3} + \sqrt{2}} \times \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$

$$y = \frac{x\sqrt{3} - x\sqrt{2}}{3 - 2}$$

$$y = x(\sqrt{3} - \sqrt{2})$$

Question 5

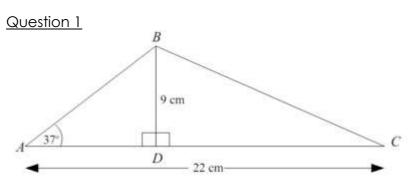
$$v^{2} - ta = Cx$$
$$v^{2} = Cx + ta$$
$$v = \pm \sqrt{Cx + ta}$$

Question 6

$$\frac{2}{x} = 6y - 5$$
$$x(6y - 5) = 2$$
$$x = \frac{2}{6y - 5}$$

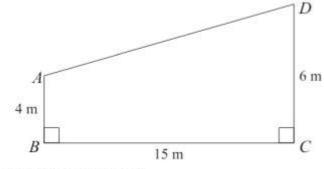
Question 7

$$g^{2} = \frac{my + ma}{y}$$
$$g^{2}y = my + ma$$
$$g^{2}y - my = ma$$
$$y(g^{2} - m) = ma$$
$$y = \frac{ma}{g^{2} - m}$$

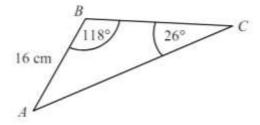

Question 8

Surface area of cylinder =
$$2\pi r^2 + 2\pi rh$$

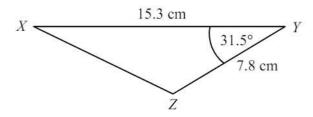
 $30x = (2\pi \times 3^2) + (2 \times 3 \times \pi \times h)$
 $30x = 18\pi + 6\pi h$
 $6\pi h = 30x - 18\pi$
 $h = \frac{30x - 18\pi}{6\pi}$
 $h = \frac{5x - 3\pi}{\pi}$


E1 Triangle geometry

Video: https://youtu.be/uVI6TAb0vBg

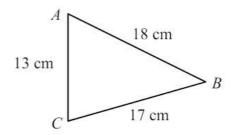

Work out the size of angle BCD. Give your answer to 1 decimal place.

Question 2

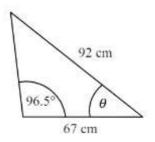

Work out the size of angle *BAD*. Give your answer to 1 decimal place.

Question 3

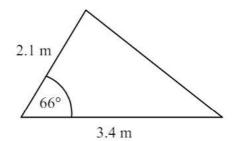
The diagram shows triangle *ABC* in which AB = 16 cm, $\angle ABC = 118^{\circ}$ and $\angle ACB = 26^{\circ}$. Find the length AC to 3 significant figures.


Question 4

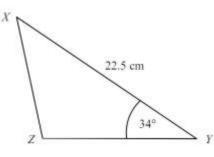
The diagram shows triangle XYZ in which XY = 15.3 cm, YZ = 7.8 cm and $\angle XYZ = 31.5^{\circ}$. Find the length of XZ.



Question 5


The diagram shows triangle *ABC* in which AB = 18 cm, AC = 13 cm and BC = 17 cm. Find the size of the angle ACB

Question 6


Find the angle $\boldsymbol{\theta}$

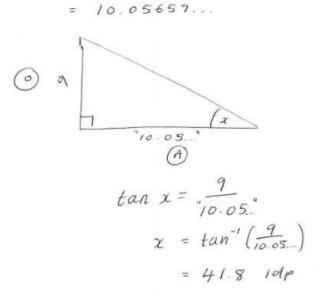
Question 7

Find the area of the triangle

Question 8

The diagram shows triangle XYZ in which XY = 22.5 cm and $\angle XYZ = 34^{\circ}$.

Find the length of XZ


E1 Triangle geometry – Answers

Question 1

$$tan(37) = \frac{9}{7}$$

 $y = \frac{9}{tan(37)}$
 $= 11.9434$

$$CP = 22 - 11.9434$$

=

41.8 .

Question 2

$$BAD = 90 + 7.6$$

= 97.6

Question 3

$$\frac{AC}{\sin 118} = \frac{16}{\sin 26}$$
$$AC = \frac{16 \times \sin 118}{\sin 26}$$
$$= 32.2 \text{ cm}$$

Question 4

$$XZ^{2} = 7.8^{2} + 15.3^{2} - (2 \times 7.8 \times 15.3 \times \cos 31.5^{\circ})$$

$$= 91.422$$

XZ = 9.56 cm (3sf)

Question 5

$$18^{2} = 13^{2} + 17^{2} - (2 \times 13 \times 17 \times \cos \angle ACB)$$

$$\cos \angle ACB = \frac{13^{2} + 17^{2} - 18^{2}}{2 \times 13 \times 17}$$

$$= 0.3032$$

$$\angle ACB = 72.4^{\circ} (1 dp)$$

Question 6

 $\frac{\sin\alpha}{67} = \frac{\sin 96.5}{92}$ $\sin\alpha = \frac{67 \times \sin 96.5}{92}$ $\sin\alpha = 0.7236$ $\alpha = 46.351$ $\theta = 180 - 96.5 - \alpha$ $\theta = 37.1^{\circ} (1 dp)$

Question 7

area

$$=\frac{1}{2} \times 2.1 \times 3.4 \times \sin 66$$

= 3.26 m² (3sf)

Question 8

 $\frac{1}{2} \times 22.5 \times YZ \times \sin 34 = 100$ $YZ = \frac{200}{22.5 \times \sin 34}$ = 15.896 $XZ^{2} = 22.5^{2} + 15.896^{2} - (2 \times 22.5 \times 15.896 \times \cos 34)$ = 165.906

XZ = 12.9 cm (3 sf)

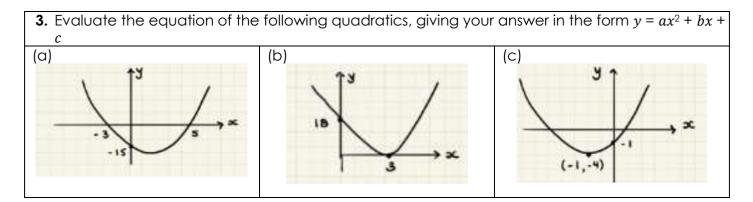
Practice Test 1

Write out the solutions to each of the following questions. Show full working, without the use of a calculator.

B1 Indices

1.	Evaluate	2.	Express in the form x^k	3.	Solve	4.	Solve
	$\left(\frac{8}{125}\right)^{-2/3}$		$\frac{\sqrt{x} \times \sqrt[3]{x}}{x^2}$		$9^{x-2} = 27$		$16^x = 4^{1-x}$

B2 Surds


1.	Simplify √72	2.	Expand and simplify $(2\sqrt{7} - 5\sqrt{3}) (3\sqrt{7} + 4\sqrt{3})$	3.	Rationalise the denominator $\frac{11}{2\sqrt{5}}$	4.	Rationalise the denominator $\frac{8-3\sqrt{5}}{2+\sqrt{5}}$
----	--------------	----	---	----	--	----	--

B3 Quadratics

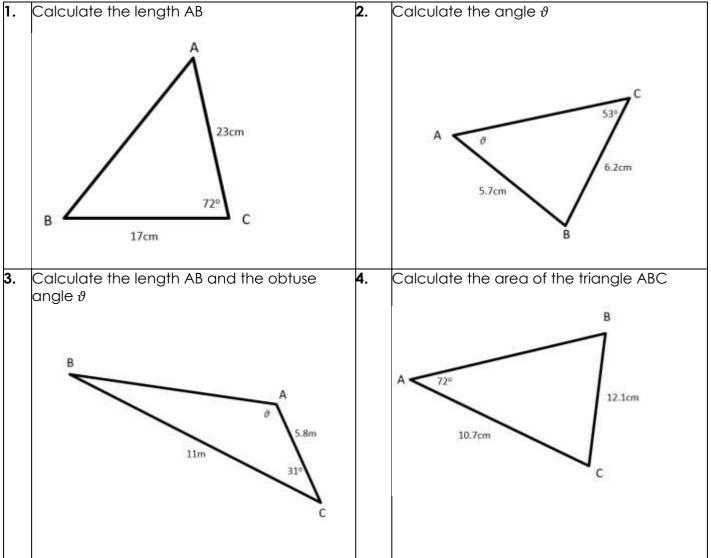
1. Solve the following quadratic equations by factorising and use your solutions to sketch the related quadratic graph, labelling all intersections with the coordinate axis.							
(a) (i) $x^2 + 3x - 28 = 0$	(b) (i) $x^2 - 6x + 9 = 0$	(c) (i) $2x^2 - 21x + 27 = 0$					
(a) (ii) Sketch $y = x^2 + 3x - 28$	(b) (ii) Sketch $y = x^2 - 6x + 9$	(c) (ii) Sketch $y = 2x^2 - 21x + 27$					

2. Solve the following quadratic equations by completing the square and use your solutions to sketch the related quadratic graph, labelling all intersections with the coordinate axis and turning point.

(a) (i) $x^2 + 4x - 7 = 0$	(b) (i) 11 + $8x - x^2 = 0$	(c) (i) $3x^2 - 12x + 2 = 0$
(ii) Write $y = x^2 + 4x - 7$ in the form $y = a(x + b)^2 + c$	(ii) Write $y = 11 + 8x - x^2$ in the form $y = a(x + b)^2 + c$	(ii) Write $y = 3x^2 - 12x + 2$ in the form $y = a(x + b)^2 + c$
(iii) Sketch $y = x^2 + 4x - 7$	(iii) Sketch $y = 11 + 8x - x^2$	(iii) Sketch $y = 3x^2 - 12x + 2$

B4 Simultaneous Equations

1.	Solve	2.	Solve	3.	Solve
	3x + 3y = -4		y = x - 6		$3x^2 - x - y^2 = 0$
	5x - 2y = 5		$\frac{1}{2}x - y = 4$		x + y = 1
			2		

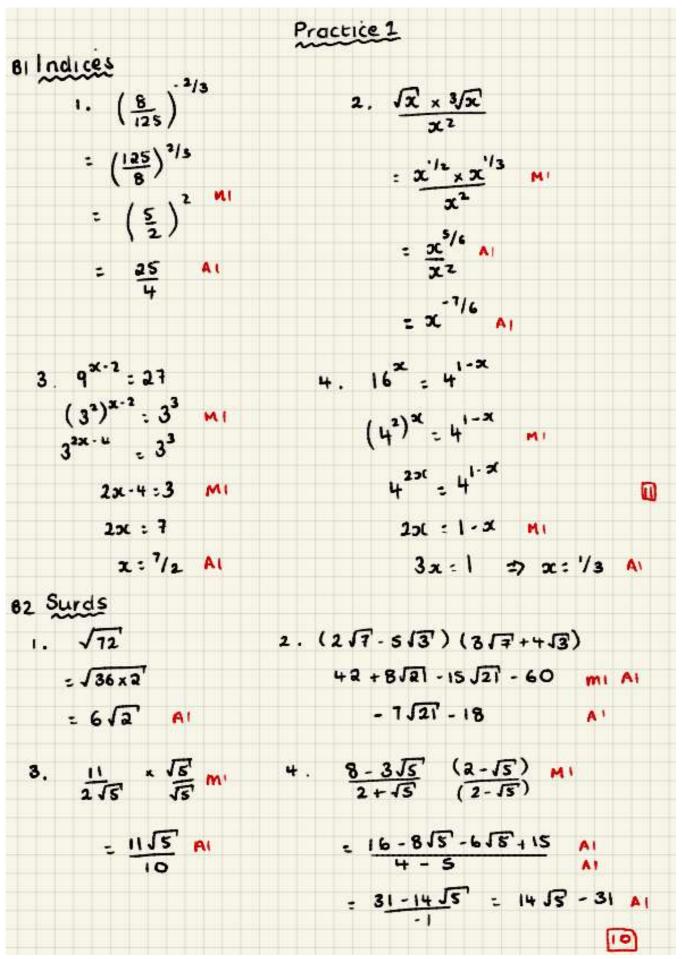


B5 Inequalities

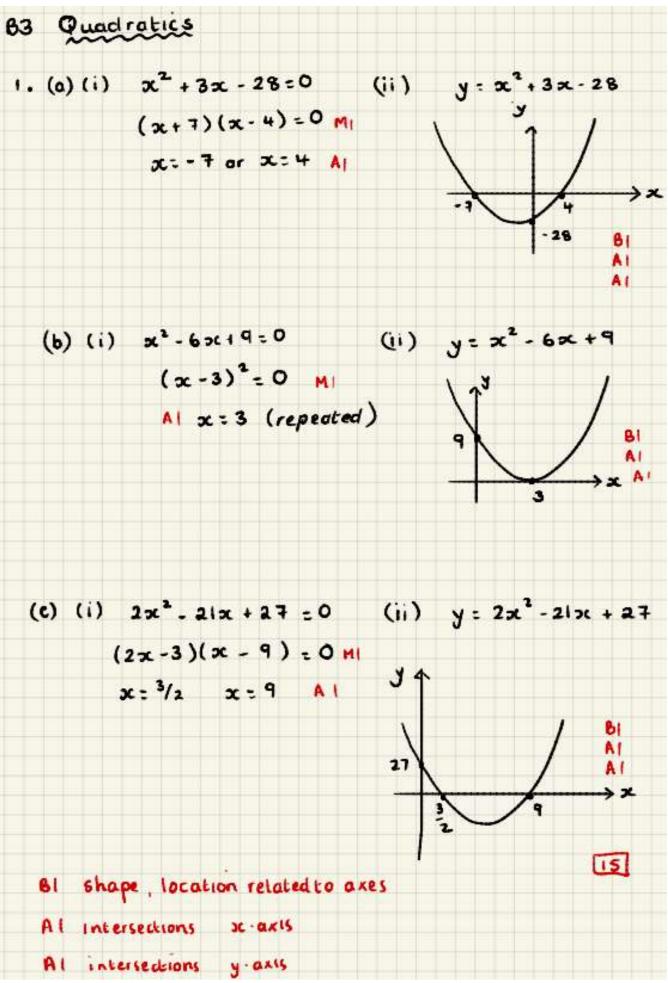
Find the set of values for which...

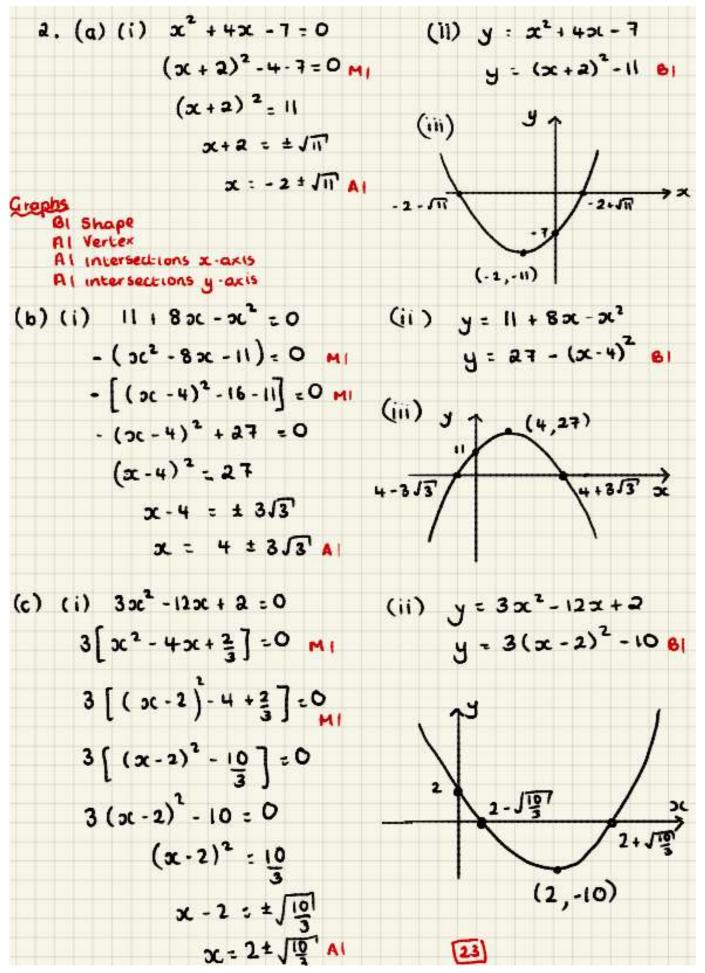
1.	$3(1-2t) \leq t-4$	2.	$2x^2 - 9x + 4 \le 0$	3.	2y+3 < 3y(y-2)
----	--------------------	----	-----------------------	----	----------------

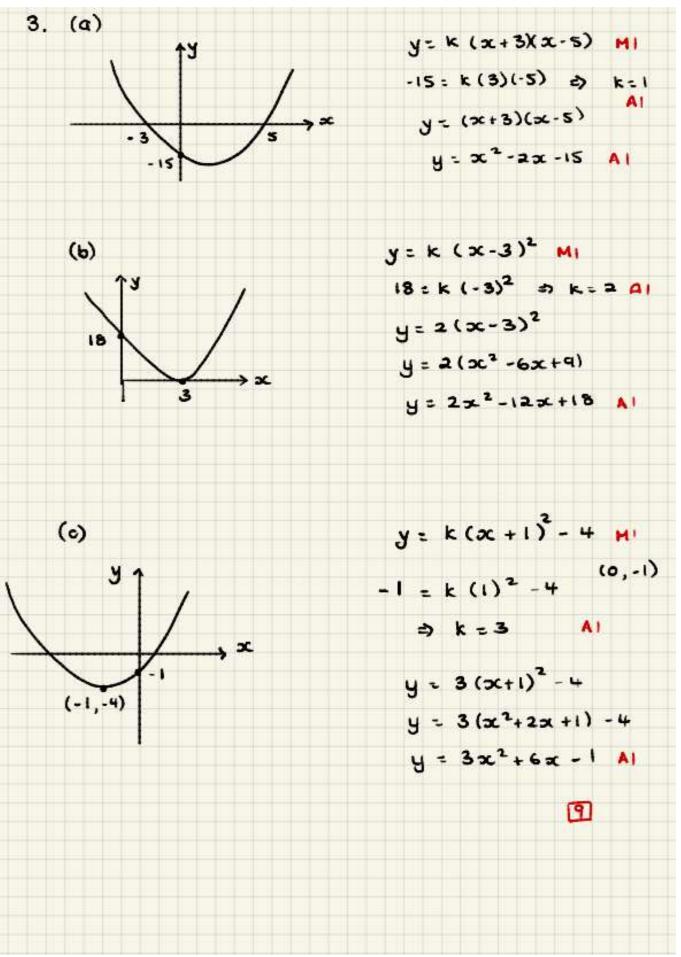
E1 Triangle Geometry (Calculator)

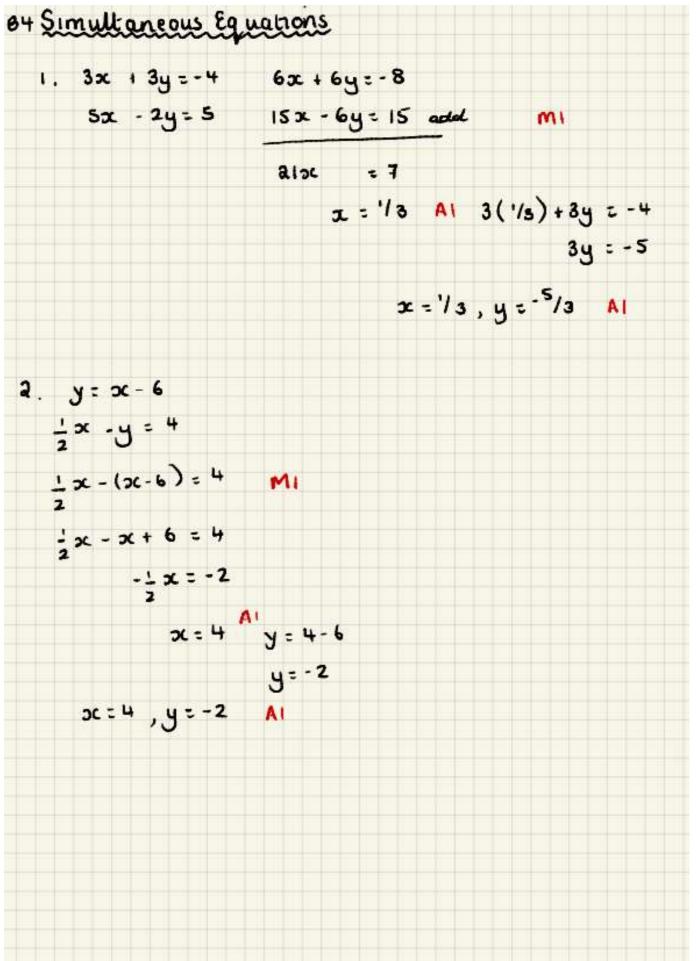


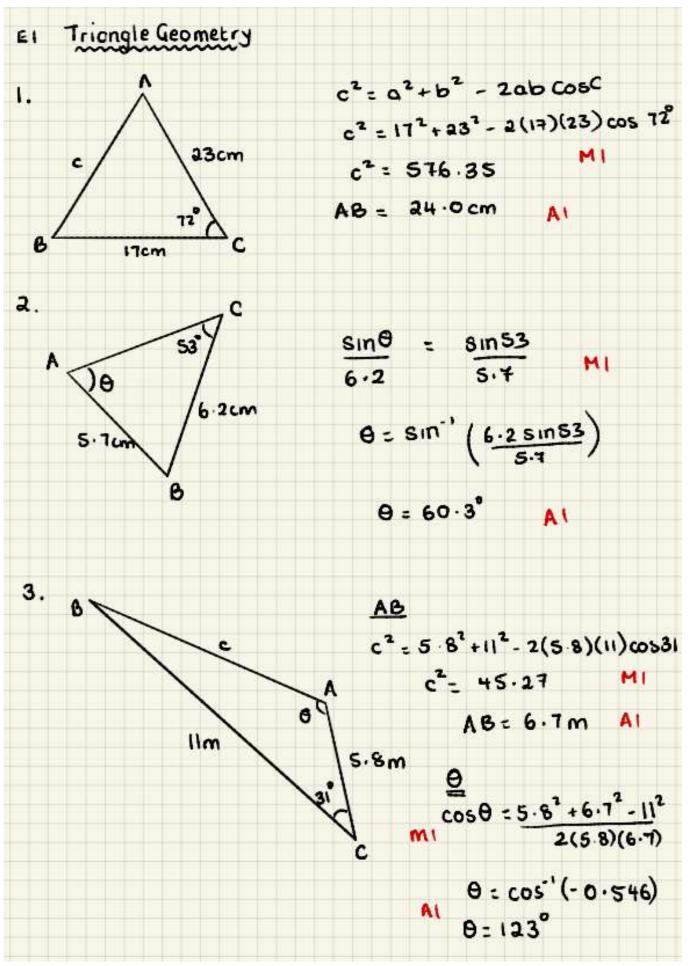
Re-arranging equations

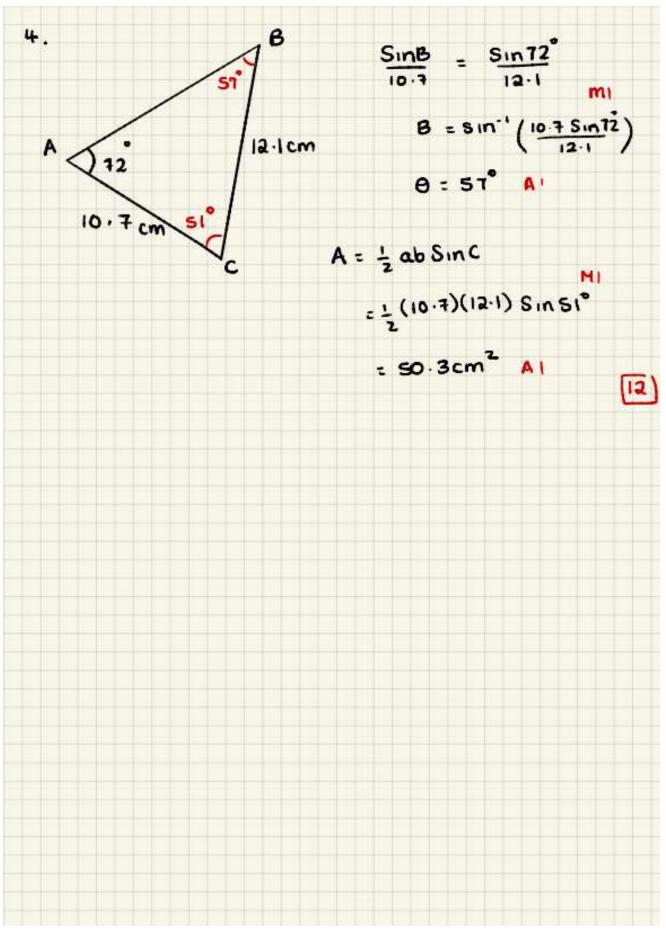

1.	To find velocity, v , we use the formula	2.	Make x the subject of
	$v^2 = u^2 + 2as$ Rearrange to find <i>s</i>		$4F = F + \frac{a}{y + x}$











3. $3x^2 - x - y^2 = 0$ $x + y = 1$
372 - x - (1-x) = 0 MI y=1-2L
$3x^2 - x - (1 - 2x + x^2) = 0$
3x2 - 1 + 22 - x2 = 0
$2x^2 + x - 1 = 0$ AI
(23c-1)(3c+1)=0
x= 12 x=-1 A1
y=1- 12 y=11
oc= 12 y= 1/2 A1 x=-1, y=2 A1
85 Inequalities
1. $3(1-2t) \le t-4$ 2. $2x^2 - 9x + 4 \le 0$
3-66666-4 (272-1)(72-4)50 MI MI 7676 CV5 72:12 72 41 73
7 5 76 CVS x:1/2 x=4 A1 yy
1 1 2 ≤ x ≤ 4 A/ 3. 2y + 3 < 3y (y - 2)
$2y + 3 < 3y^2 - 6y$
0 < 3y ² - 8y - 3 61 1 ^y
3y2-8y-3>0 /
$(3y+1)(y-3) > 0 M \longrightarrow M$
CVS y= 1/3 y= 3 A1 3
y <- '13 or y>3 A1

Re-arranging equations

1.To find velocity, v, we use the formula $v^2 - u^2 = 2as$ $v^2 = u^2 + 2as$ $s = \frac{v^2 - u^2}{2a}$ Rearrange to find s $s = \frac{1}{2a}$ 2. $3F = \frac{a}{y+x}$ Make x the subject of3Fy + 3Fx = a $4F = F + \frac{a}{y+x}$ 3Fx = a - 3Fy $x = \frac{a - 3FY}{3F}$

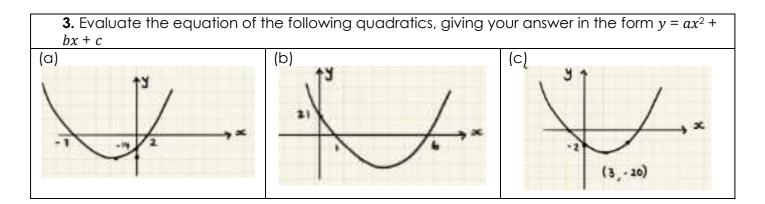
Practice Test 2

Write out the solutions to each of the following questions. Show full working, without the use of a calculator.

B1 Indices

1.	Evaluate	2.	Express in the form x^k	3.	Solve	4.	Solve
	$\left(3\frac{3}{8}\right)^{-1/3}$		$\frac{\sqrt{x} \times \sqrt[5]{x}}{x^2}$		$3^{3x-2} = \sqrt[3]{9}$		$\left(\frac{1}{2}\right)^{1-x} = \left(\frac{1}{8}\right)^{2x}$

B2 Surds


1.	Simplify √80	2.	Expand and simplify $(7 - 3\sqrt{5}) (3\sqrt{5} - 2)$	3.	Rationalise the denominator $\frac{7}{5\sqrt{3}}$	4.	Rationalise the denominator $\frac{3+5\sqrt{11}}{7-\sqrt{11}}$
----	--------------	----	---	----	---	----	--

B3 Quadratics

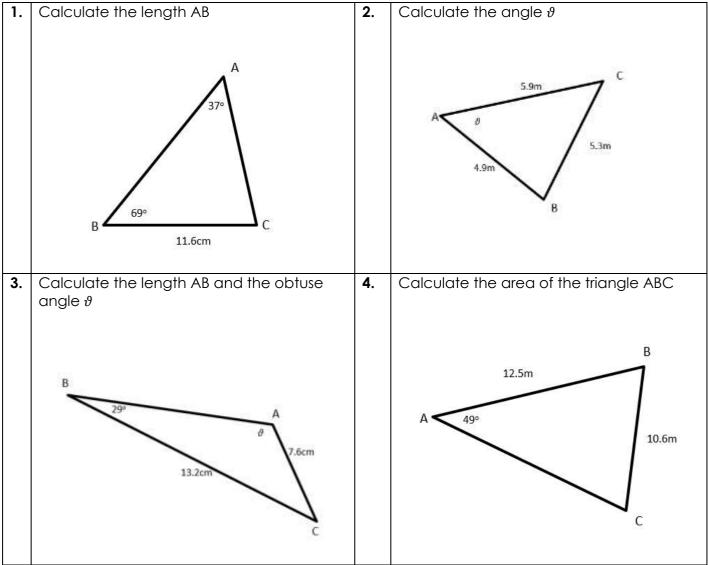
 Solve the following quadratic equations by factorising and use your solutions to sketch the related quadratic graph, labelling all intersections with the coordinate axis. 									
(a) (i) $x^2 - 13x + 40 = 0$	(b) (i) $x^2 + 5x = 0$	(c) (i) $6x^2 + 5x - 4 = 0$							
(a) (ii) Sketch $y = x^2 - 13x + 40$	(b) (ii) Sketch $y = x^2 + 5x$	(c) (ii) Sketch $y = 6x^2 + 5x - 4$							

 Solve the following quadratic equations by completing the square and use your solutions to sketch the related quadratic graph, labelling all intersections with the coordinate axis and turning point.

(a) (i) $x^2 + 2x - 20 = 0$	(b) (i) $-11 + 8x - x^2 = 0$	(c) (i) $3x^2 - 18x + 2 = 0$
(ii) Write $y = x^2 + 2x - 20$ in the	(ii) Write $y = -11 + 8x - x^{2}$ in the	(ii) Write $y = 3x^2 - 18x + 2$ in the
form $y = a(x + b)^2 + c$	form $y = a(x + b)^2 + c$	form $y = a(x + b)^2 + c$
(iii) Sketch $y = x^2 + 2x - 20$	(iii) Sketch $y = -11 + 8x - x^2$	(iii) Sketch $y = 3x^2 - 18x + 2$

B4 Simultaneous Equations

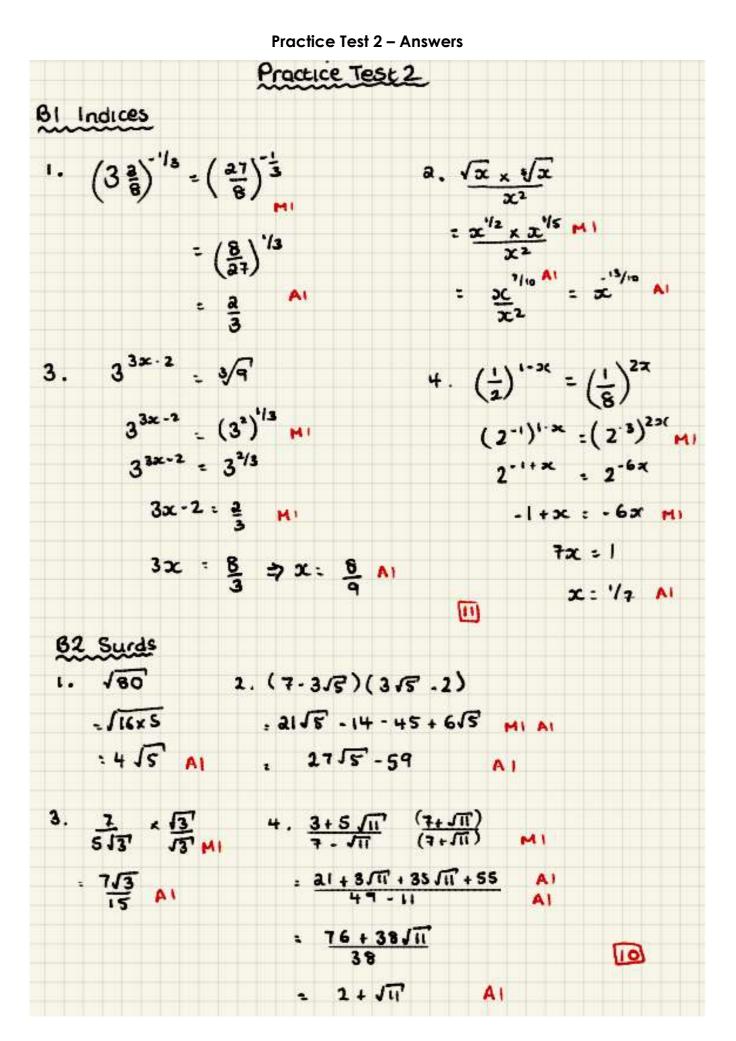
1.	Solve	2.	Solve	3.	Solve
	3x - 4y = 16		3y = 2x - 8		$3x^2 - xy + y^2 = 36$
	2x + 12y = 7		4x + y = -5		x - 2y = 10
					-

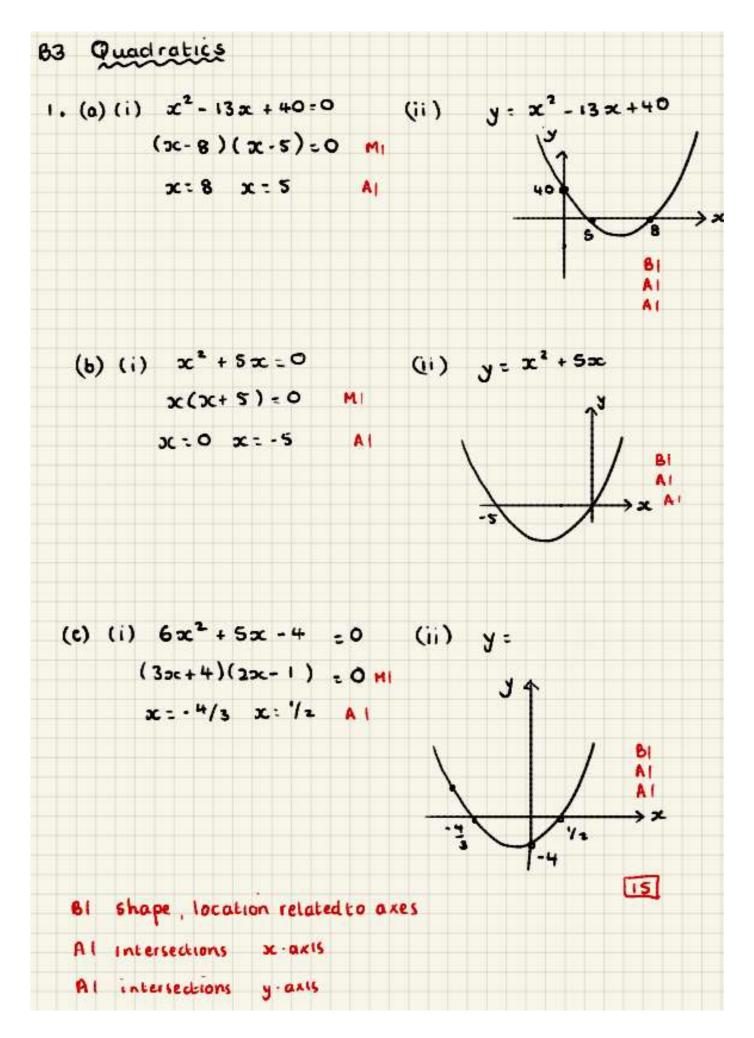


B5 Inequalities

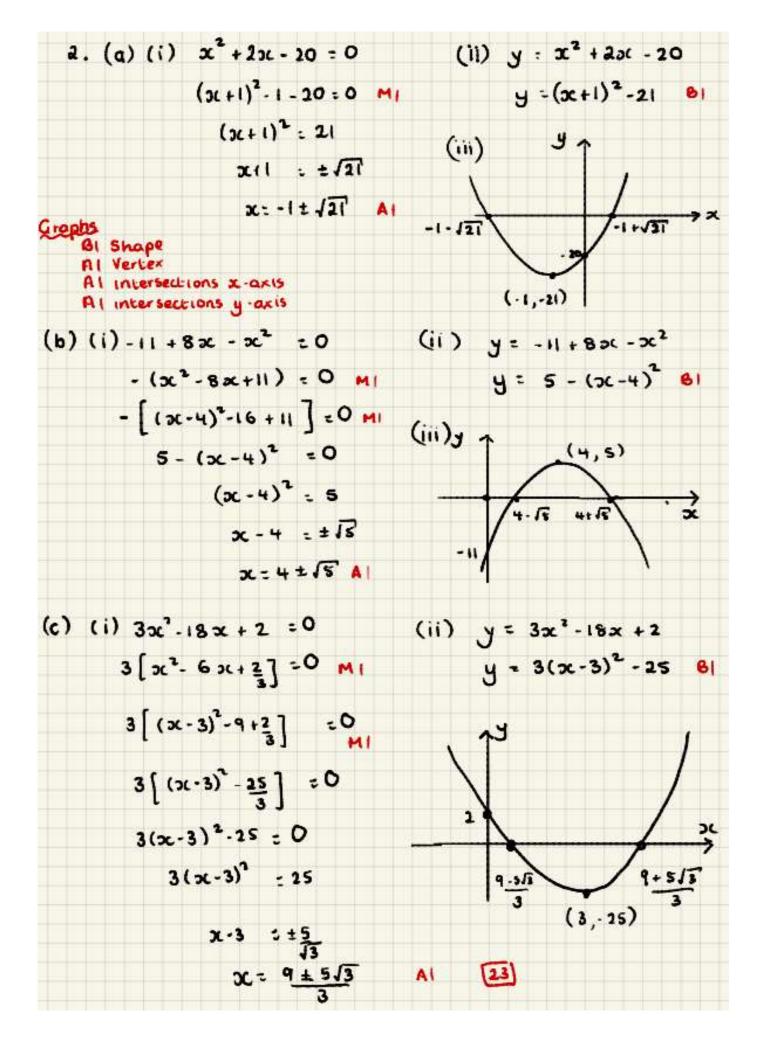
Find the set of values for which...

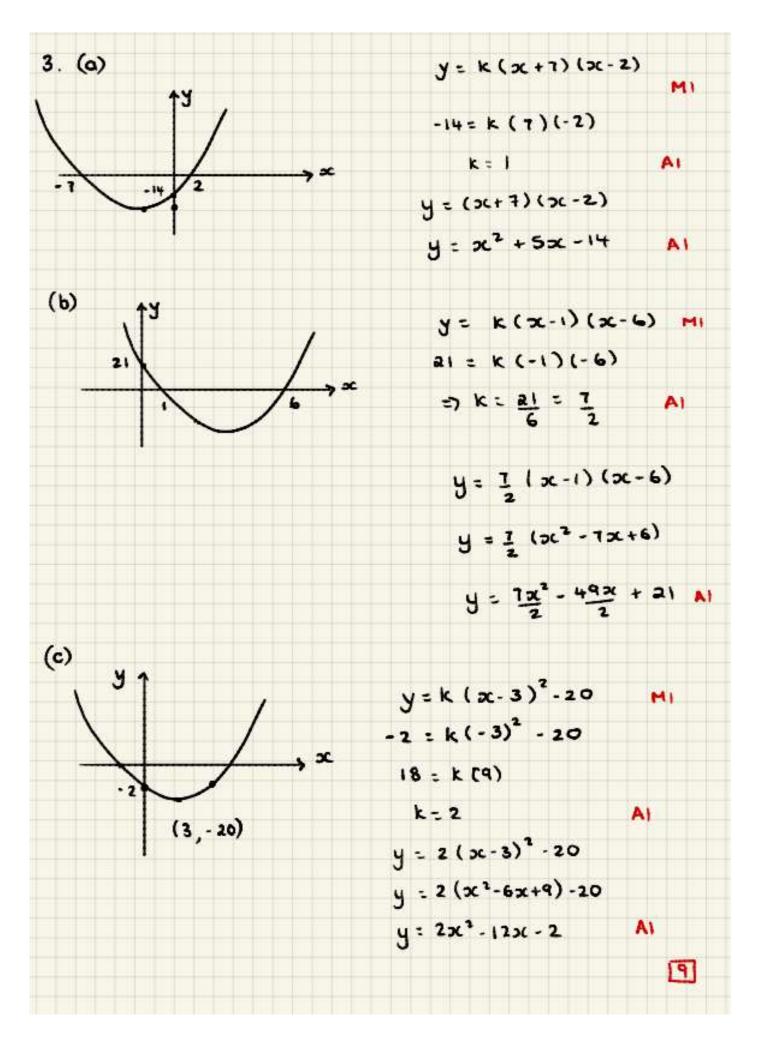
1.	$4(5-2y) \ge 3(7-2y)$	2.	$2x^2 - 5x - 3 > 0$	3.	$x(2x+1) \le x^2 + 6$
----	-----------------------	----	---------------------	----	-----------------------

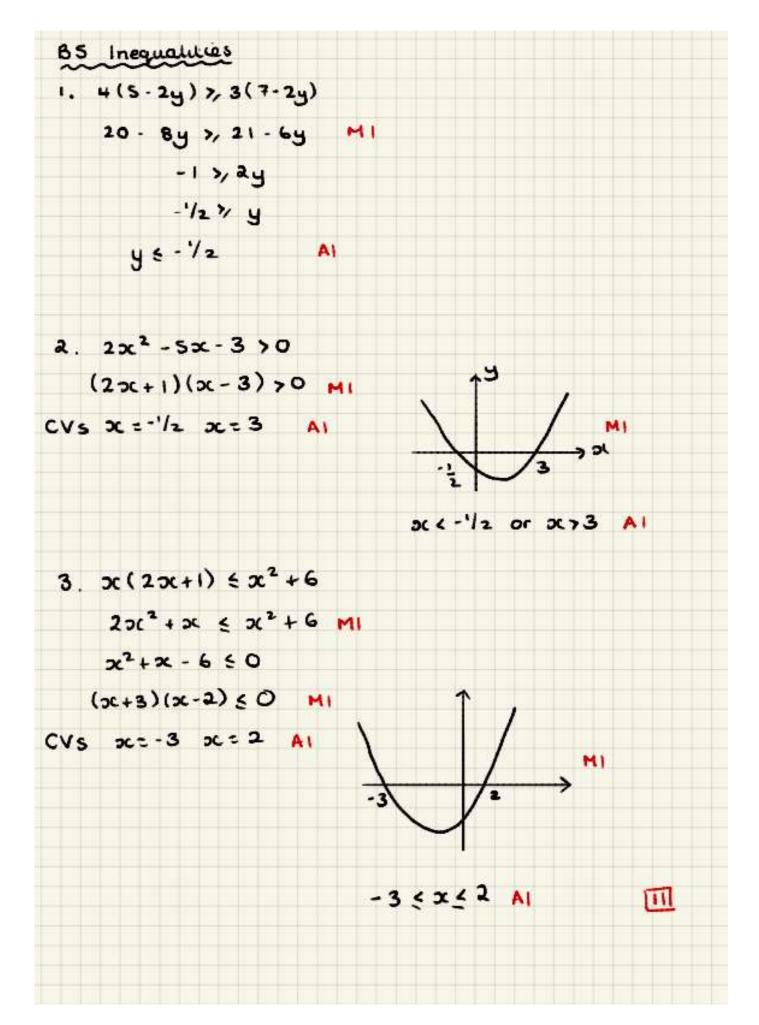

E1 Triangle Geometry (Calculator)

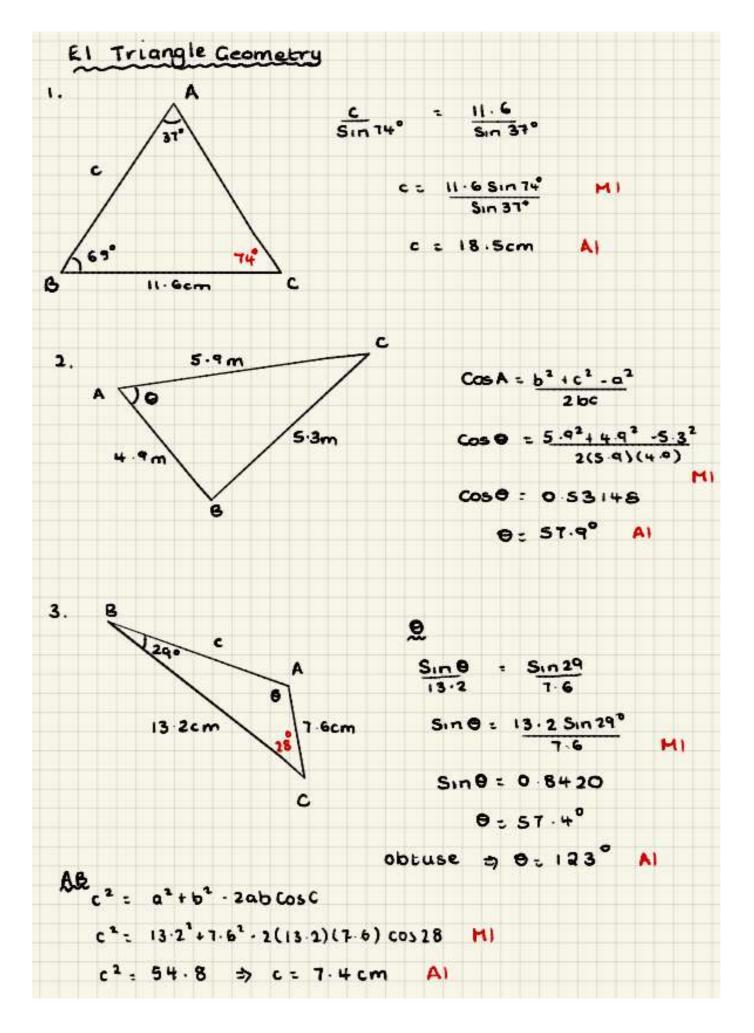

Re-arranging equations

1.	Make <i>x</i> the subject of $x + a = \frac{x+b}{c}$	2.	Make <i>a</i> the subject of $\frac{1-a}{1+a} = \frac{x}{y}$
----	--	----	--









۱.	300	- 49	= 16		900	- 12	4 =	48	3							
						1.5				M	۱		+			
	as	c + 12	.g -	•	a 50	: +12	4 =	-								
					11	ol 🛛	=	5	5			•				
++						~	: 5		AL						= 16	
						~	- 0		<u> </u>			13		-1	ت ا ب ب	14
++														9	به در د - ار ت	14
										a :	: 5	. 4	e -'	14	A	A
			1.20									· 0	•			64 T
2.	3y :	. 2 x	- 8	=> 2>	c : 3y x : 6y	+ 8								+ +		
	42.+	42-	5	43	r - oy			H	1							
69	1+16+	9 -	- 5													
		74 = -	- 21													
++		y =		2	oc = 3									+-+	_	
		a -	3	a	x - 30	-3)+1	3									
					x :- '	12	AI		x :	-'12	9		-3	A1		
					APPART A									++		
3.3	3 x² -	x4 +	42 =	36												
100		-	-										-	+++		
	a.	- 29 :	. 10	2) 3	x = 2	3+10										
3 (:	2 4 + 10	$()^{2} - ($	241	10)4	+ y ² :	: 36			64.1							
_			0.525		- ¢) + y¹											
1.52.6	37				855											
292	+ 120	y+3	00 -	29	104+	9-=3	56						-			
1	192 +	1104	+ 2	64 =	0											
	100	~														
	y2 1	109	+ 2	4 = 0	,	AI							+			
(y+6)(4	+4)	20	K .											
		-				M	ŀ							+++		
	y=-															
× :	2(-6))+10	x	= 2 (-	4)+1	0						-				
x -	- 2		-	. 2												
			~	A												

Re-arranging equations

1.	Make x the subject of $x + a = \frac{x+b}{c}$	 $c(x + a) = x + b$ $cx + ca - x = b$ $cx - x = b - ca$ $x(c - 1) = b - ca$ $x = \frac{b - ca}{c - 1}$
2.	Make <i>a</i> the subject of $\frac{1-a}{1+a} = \frac{x}{y}$	 $y(1-a) = x(1+a)$ $y - ay = x + xa$ $y - x = xa + ay$ $a(x + y) = y - x$ $a = \frac{y - x}{x + y}$